
Formal Verification of the Tezos Codebase
Formal Methods at Nomadic Labs

Zaynah Dargaye

Journée GT MFS

Formal Methods, DNA of Nomadic labs 2

At Tezos Origin
Tezos is implemented in OCaml, a powerful functional programming
language offering speed, an unambiguous syntax and semantic, and an
ecosystem making Tezos a good candidate for formal proofs of correctness.
Tezos White Paper – L.M.Goodman 2014.

Nomadic Labs Expertise
A R&D team with a strong background in formal specification and verification,
as well as in programming language theory.

In this talk we will focus only on the OCaml implementation of Tezos from
gitlab.com/tezos/tezos (Octez)

gitlab.com/tezos/tezos

Daily Usage of Lightweight Formal Methods 3

Informal Specification
Documentation at http://tezos.gitlab.io/ maintained with the codebase
on git. Readme files for module, and annotated api files, in progress.

Type System
OCaml type system guarantees.

Testing
Classical unit/integration testing, Property-based testing, system testing, and
testnet.

Code Reviews
Every update to the codebase is reviewed by several experimented
engineers.

http://tezos.gitlab.io/

Formal Verification of Smart Contract 4

Michelson
The assembly smart contract language of Tezos, low-level stack-based,
strongly typed without jump instructions.

Mi-Cho-Coq
Michelson deep-embedding in Coq, with a weakest precondition interpreter
enabling functional verification.
Functional verification of a Decentralized Exchange, Dexter.

Ph.D. Static Analysis for Michelson
Abstract Interpretation of Michelson Smart Contract – Guillaume Bau
advisors: A. Miné LIP6, Nomadic Labs mentors: V. Botbol and M. Bouaziz.

Certified Cryptographic Library 5

We use the HACL* implementation, developed and certified in F*.

Useful Library
A comprehensive collection of crypto primitives under a unified API ,
providing agility (an API for several algorithms), and multiplexing (several
implementation choices for an algorithm).

High Performance
Hand-tuned C+asm for x64, with fallback high performance C version for
several primitives.

Formally Verification Guarantees
safety (memory safety, no calls to illegal operations), functional correctness,
secret independence (resistance to timing- and cache-based side channel
attacks).

Section 1

Daily Usage of Formal Methods, Under Construction

Daily Usage of Formal Methods 7

A Cutting-Edge Technology
High shipping frequency, evolving requirements, evolving priorities,
inter-dependent features in terms of both impacted code components and
required expertise.

High Quality Technology
Critical data managements, adversarial deployment contexts, asset and
value of the brand.

Having both means having a development process that includes formal
methods.

Mission 8

Co-design
the specification and the code

focusing on prioritized developments.

Code Specification

Tests
Evolution validation
Certified components

Implicit invariants

High-level sanity
checks

Section 2

Efficient Program Proof

Formal Tools for the Verification Process 10

Reference
Code

Certified Code

Formal CodeFeature Spec

Feature Code

generate
co-design

satisfy

extract

provide

replace

validate
Tezos codebase

Tezos Spec

coq-of-ocaml

Mechatez

Coq FreeSpec

Property-based testing

Code Specification: the Reference Code 11

FREESPEC “A framework for implementing and
certifying impure computations in Coq”

Code Semantics
Extend the program with effects framework with a contract-based reasoning.

Program Proof
Hiding sophisticated theories and administrative proof details.

Modular
Reasoning on one component at the time, and component compositions.

Trust Bases and Maintainability
Based on well-established theoretical features, open-source and developed
at ANSSI and IRIF by Thomas Letan and Yann Regis-Gianas, both at
Nomadic Labs now.

Certified Code Injection 12

Getting the FreeSpec interface, easing injection of extracted code

MECHATEZ:
• based on COQFFI developped by T. Letan and in coq-community,
• integrated into Tezos codebase and generated at building time,
• objective is to give the COQ API of the whole codebase in order to focus

on verifying a particular component.
• also provide injection of extracted code features.

Model-Based Testing with Certified Oracle 13

Can we validate the observational equivalence btw. an OCaml function fo and
an extracted one fc when the precondition P is satisfied by the pre-state Pre:

∀Pre,P(Pre)⇒ fc ≈ fo?

Property-based Testing
Testing predicate satisfaction by a function in some generated pre-states.

P(Pre) Generation
Predicates on the input state, we need simple state constructors.

Observational Equivalence ≈
Comparing probes: state observable data (alloc, set, and free).

∀Pre,Pre ∈ stategen P ⇒ probes fc = probes fo ⇒ fc ≈ fo.

Section 3

Verifying Correct Integration in the Codebase

Blockchain Protocols at Glance 15

A Message passing protocol enabling a network to manage a replicated
append-only data structure (blockchain).

node n1

node n2

node n3

Ur head?

Ur head?

My head

My head My new head

Blockchain Properties 16

Eventual Consistency
Every node will eventually share the same view of the blockchain.

Common Prefix
Every node shares a common prefix of this shared common view.

Chain Growth
As long as new block are appended, this common prefix grows.

Blockchain Content
Writing entries in the ledger are consistent with its previous content.

(BBP,Garay&al.) (BCADT,Anceaume&al.)

Node blocktree 17

local chaining properties:
• block chaining,

• Chain integrity,

• In chaining allowed window,
(latency absorption)

• Agreement reaching,

• Potential head update.

Finalized
prefix

Allowed
appending

zone

last allowed
fork

Genesis Block

head

Node Properties 18

rp1 hd

rp2 hd

Known common prefix
with (cp2)

Known common prefix
with cp(rp1)

Local known common
prefix min cp(rpi)

...........

Node common prefix:
• peer common prefix with each remote peer,
• known common prefix with its remote peers.

Node chain growth: The node learns a new head from at least one of its
remote peers.

Network Properties 19

• Common Prefix: lift (extension) of every node’s known common prefix,
• Chain Growth: New block injection ensures that at least one node will

eventually have a new head to advertise.

In a suitable execution model: Communication model, Scheduling and
fairness.

How to model Faulty, Byzantine and Rational nodes?

Section 4

A Blockchain Protocol with a Self-amendment Mechanism

Updating Deployed Software 21

Staying a cutting-edge blockchain with hard fork control thanks to
self-amendment.

Self-amendment Consequences
The economic protocol (EP): ledger entries, agreement and self-amendment.
A score: abstraction for agreement reaching and chain validity.
The shell, the structural node, uses score to drive block chaining and head
switches.

Impact on Blockchain Properties

Abstract EP ' EP API + score properties + content appending validation.

Each EP is an instance of an abstract EP.

High-level Specification and Properties 22

COQUILLE a formal framework for verifying component integration in the
Tezos codebase.

NodeNode

Node Node

Network (clique)

Execution Model

+

Satisfy

Blockchain props:

msg, n1

Shell Abstraction

Generic Protocol Protocol Instance

State Blocktree

receive

msg', n1 |
broadcast msg'

send

instantiate

parametrize

modify

abstract

Local Blockchain props

Baobab Shape

satisfy

imply

Blockchain Content Validity 23

Genesis head

Cgen C1 Cpre

blockchain

interpreted ledger state

Gen b1 bi bpred

Ci
effects of b1

content
effects of

bpred content

Legder Abstraction
The ledger content of a chain (whose head is) ch is called a context: C. A
context is valid: V C if it satisfies the economic protocol invariants. The
genesis context is valid.

By Induction/Construction on Application
Assuming V Cpre, a block candidate b appending will succeed if:
bpred is the predecessor of b, and b content effects on Cpre produces Cpost

such as they maintain the economic protocol invariants.

Section 5

Classical 3-layer Verification in Industrial Setting

At a Glance 25

Formal Consistency
Compliance of a component specification with the global specification in
Coquille

Generating FreeSpec program
Generation from the component implementation of a FreeSpec program

Program Proof
Verification in FreeSpec with dedicated to our code tactics

Extracting a Reference Implementation
Thanks to Mechatez, extracting a reference implementation of the component
that can be integrated in the codebase.

Validating the Implementation by Model-based Testing
Observational equivalence between the implementation and the reference
one.

Ongoing and Beyonds 26

Current Status
Work in progress, modularity enables incremental developments.
A first use case on the road in the economic protocol side.
Concurrent or distributed codes and economic protocol switching are out of
the scope.

Ph.D. Thesis for Communicating Components
Formal Specification and Verification of Message Passing Protocol – Paul
Laforgue,
advisors: G.Castagna, and G.Bernardi IRIF, Nomadic Labs mentors: Z. Dargaye, T.
Letan and Y. Regis-Gianas.

	Daily Usage of Formal Methods, Under Construction
	Efficient Program Proof
	Verifying Correct Integration in the Codebase
	A Blockchain Protocol with a Self-amendment Mechanism
	Classical 3-layer Verification in Industrial Setting

