Privacy-Preserving Computations

David Pointcheval
CNRS - ENS/PSL - INRIA

GDR Sécurité - Keynote
June 30th 2021
Security of Communications

• One ever wanted to exchange information securely
• With the all-digital world, security needs are even stronger: communication devices are
 • in your pocket
 • at home
Provable Security

• If the adversary A can win the security game G within time t with probability ε
Provable Security

- If the adversary A can win the security game G within time t with probability ϵ
Provable Security

• If the adversary A can win the security game G within time t with probability ε
Provable Security

• If the adversary A can win the security game G within time t with probability ε

• A simulator S can break the problem P within time t' with probability ε'

Instance x of P

Solution to x

S
Provable Security

• If the adversary A can win the security game G within time t with probability ε

• A simulator S can break the problem P within time t' with probability ε'

• Experiments give bounds on the best possible success probability ε'' within a time bound t' on the problem P

• We all agree on some safe assumptions:
 within a time bound t, no adversary can break P with probability greater than ε

• We eventually obtain bounds on the best possible adversary A
Provable Security

This methodology with a security game can be applied to any cryptographic primitive or protocol:

• Encryption: with semantic security
• Signature scheme: with unforgeability
• Authenticated key exchange: with privacy and authenticity
• etc

Privacy-Preserving Computations
The Cloud: Access Anything from Anywhere

One can store

• Documents to share
• Pictures to edit
• Databases to query

and access from everywhere
Security Requirements

As from a local hard drive/server, one expects

- **Storage** guarantees
- **Privacy** guarantees
 - confidentiality of the data
 - anonymity of the users
 - obliviousness of the queries/processing

How to proceed?
Confidentiality vs Sharing & Computations

Usual Encryption schemes protect data

E.g. either symmetric encryption, where $c = E_{sk}(m)$ and then $m = D_{sk}(c)$

or asymmetric encryption, where $c = E_{pk}(m)$ and then $m = D_{dk}(c)$

Only the knowledge of the decryption key (either sk or dk) allows to get m

• the provider stores the ciphertexts without any information about the messages

• nobody can access them either, except the owner/target receiver

Privacy by Design

How to outsource computations - How to share the results without decrypting the data?
Broadcast Encryption

[Fiat-Naor - Crypto '94]
The sender chooses a target set
Broadcast Encryption

The sender chooses a target set

[Fiat-Naor - Crypto ‘94]
Broadcast Encryption

The sender chooses a target set
Users get all-or-nothing about the data

Sharing to a Target Set
but No Computations!
Homomorphic Encryption

Encryption of a bit b: $c = E(b) := b + 2r + qp$, for random integers q, r

$k = 2r + qp$ can be seen as a random mask, even for a fixed secret p

- $D(c) := (c \mod p) \mod 2 = b + 2r \mod 2 = b$
- $E(b) + E(b') = (b + 2r + qp) + (b' + 2r' + q'p)$

 $= (b \oplus b') + 2(r + r' + b \cdot b') + q''p$

 $= E(b \oplus b')$ if $r + r' + 1 < p/2$

- Noise: $r'' = r + r' + b \cdot b'$ grows slowly (sum)
- Secret key: large integer p
- Additively homomorphinc
Homomorphic Encryption

\[c = E(b) := b + 2r + qp \]

- \(E(b) \times E(b') = (b + 2r + qp) \times (b' + 2r' + q'p) \)
 \[= (b \cdot b') + 2(rb' + r'b + 2rr') + q'' p \]
 \[= E(b \cdot b') \quad \text{if} \quad r + r' + 2rr' < p/2 \]

- Noise: \(r'' = rb' + r'b + 2rr' \) grows very fast (product)
- Encryption: small random noise \(r \), large random \(q \)
- Multiplicatively homomorphic

\[E(b) + E(b') = E(b \ XOR b') \]
\[E(b) + 1 = E(\ NOT \ b) \]
\[E(b) \times E(b') = E(b \ AND \ b') \]

\(\longrightarrow \) any Boolean circuit
Somewhat Homomorphic Encryption

Additive + Multiplicative Homomorphisms allow any Boolean operation

[Additive + Multiplicative Homomorphisms allow any Boolean operation]
Somewhat Homomorphic Encryption

Additive + Multiplicative Homomorphisms allow any Bolean operation
But the depth of the circuit increases the noise: limited computations

[Gentry - STOC ’09]
Bootstrapping: Fully Homomorphic Encryption

[Gentry - STOC ’09]
Bootstrapping: Fully Homomorphic Encryption

With a "virtual" decryption: one reduces the noise

Fully Homomorphic Encryption: any computation!

\[C' = E(m) \]

[Gentry - STOC ’09]
Outsourced Computations

Circuit

Inputs
Outsourced Computations
Outsourced Computations

Encrypted Inputs \rightarrow Circuit \rightarrow Encrypted Outputs

Inputs
Outsourced Computations

Inputs

Encrypted Inputs

Circuit

Encrypted Outputs

Outputs
Outsourced Computations

FHE allows
• Any computation on private inputs
• Private « googling »

SNARGs: Succinct Proofs of correct computation

Any computation
But no possible sharing!
Functional Encryption

[Boneh-Sahai-Waters - TCC '11]
The authority generates functional decryption keys dk_f according to functions f.

[Boneh-Sahai-Waters - TCC '11]
The authority generates functional decryption keys dk_f according to functions f.

[Boneh-Sahai-Waters - TCC '11]
The authority generates functional decryption keys dk_f according to functions f.

- From $C = \text{Encrypt}(x)$, $\text{Decrypt}(dk_f, C)$ outputs $f(x)$.

[Boneh-Sahai-Waters - TCC ‘11]
Functional Encryption

The authority generates functional decryption keys dk_f according to functions f:

- From $C = \text{Encrypt}(x)$, $\text{Decrypt}(dk_f, C)$ outputs $f(x)$
- This allows controlled sharing of data

Result in clear for a Specific Function for Specific Users

[Boneh-Sahai-Waters - TCC '11]
Functional Encryption is Powerful

Functional Encryption allows access control, from $C = \text{Encrypt}(x || U)$

• with $f_{\text{id}}(x || U) = (\text{if } \text{id} = U, \text{then } x, \text{else } \bot)$: identity-based encryption

• with $f_{\text{id}}(x || U) = (\text{if } \text{id} \in U, \text{then } x, \text{else } \bot)$: broadcast encryption

but this is still all-or-nothing

Functional Encryption allows computations:

• any function f': in theory, with iO (Indistinguishable Obfuscation)

• concrete functions:
 • inner product, from $C = \text{Encrypt}(\overrightarrow{x}), f_{\overrightarrow{y}}(\overrightarrow{x}) = \overrightarrow{x} \cdot \overrightarrow{y}$
 • quadratic functions, from $C = \text{Encrypt}(\overrightarrow{x}, \overrightarrow{y}), f_{Q}(\overrightarrow{x}, \overrightarrow{y}) = \overrightarrow{x}^T \cdot Q \cdot \overrightarrow{y}$
FE: Inner Product

Time series data: \overrightarrow{x}_t
A few distinct linear statistic parameters \overrightarrow{a}_i to get $\overrightarrow{a}_i \cdot \overrightarrow{x}_t$
- Each time period, \overrightarrow{x}_t is encrypted
- For each parameter \overrightarrow{a}_i, the decryption key dk_i is generated

Can be done from any linearly homomorphic encryption:
- Master Secret Key: $sk = \overrightarrow{s}$, Functional Decryption Key: $dk_\overrightarrow{y} = \overrightarrow{s} \cdot \overrightarrow{y}$
- Encryption of \overrightarrow{x}: $c_0 = r$, $\overrightarrow{c} = \overrightarrow{x} + r \cdot \overrightarrow{s}$, for random r
- Decryption: $\overrightarrow{c} \cdot \overrightarrow{y} = \overrightarrow{x} \cdot \overrightarrow{y} + r \cdot \overrightarrow{s} \cdot \overrightarrow{y} = \overrightarrow{x} \cdot \overrightarrow{y} + r \cdot dk_\overrightarrow{y}$
- One-time pad: insecure… but can be made secure with ElGamal, Regev, etc (based on Discrete Logarithm, Lattices, etc)

[Abdalla-Bourse-De Caro-P. - PKC ’15]
Multi-Client Functional Encryption

- one key limits to one function on any vector
- a unique sender only can encrypt all the inputs
 - Multi-Client Functional Encryption (MCFE)
 - Client C_j generates $E(t, j, x_{t,j})$ for the time period t
 - only one ciphertext for each index j and each time period t
 - all the individual ciphertexts globally encrypt $\overrightarrow{x_t}$
- still a unique authority for the functional key generation
 - Decentralized Multi-Client Functional Encryption (DMCFE)
 - With Independent and Distrustful Clients
Decentralized MCFE

[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt ’18]
Decentralized MCFE

[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt ’18]
Decentralized MCFE

[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt ’18]
Decentralized MCFE
Decentralized MCFE

[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt ’18]
Decentralized MCFE

- **KeyGen**(i) → secret key sk_i and encryption key ek_i for client i
- **Encrypt**(ek_i, λ, x_i) → $c_i = E(ek_i, \lambda, x_i)$ for the label λ (or time period t)
- **DKeyGen**(((sk_i)$_i$, f)) → dk_f
- **Decrypt**(dk_f, λ, C) → $f(x)$ if $C = (c_i = E(ek_i, \lambda, x_i))_i$

- **Encrypt/Decrypt** are non-interactive algorithms
- **KeyGen/DKeyGen** might be interactive protocols between the clients
 - but should be **one-round** protocols only
DMCFE: Concrete Case

- Insurance companies: list of damages
- Each individual line is quite sensitive: cannot be shared
 - encrypted by each company every month
- Monthly totals are valuable for everybody
 - functional key for each sub-total: generated together once for all
 - can be applied every month, on fresh ciphertexts, without interactions

<table>
<thead>
<tr>
<th></th>
<th>Theft</th>
<th>Fire</th>
<th>Water</th>
<th>Auto</th>
<th>Falls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co. 1</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Co. 2</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Co. 3</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>4</td>
<td>20</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
Multi-Party Computation

Cloud = possible interactions between the parties

- Private computation with a Trusted Third Party
- MPC = without any TTP
 - only interactions between the players with their secrets
 - no additional information leaks

[Yao - 1982]
2-PC and Machine Learning

Two-Party Computation = Particular case of MPC
• data owner vs. model owner
• can be applied to federated learning

Main ingredients:
• secret sharing
• comparisons: activation function

Multiple iterations until the secret is reconstructed:
• multiple layers in the network
• multiple data sources for training
FHE/FE and Machine Learning

Fully Homomorphic Encryption: any function
• one can apply a private model on private data for a client
• one can help a client to refine a model with private data

Functional Encryption: only quadratic functions
• quadratic activation function (instead of classical ReLU)
• one hidden layer only: the output is in clear

Experiments on the MNIST Data Set

[Ryffel-Dufour Sans-Gay-Bach-P. - NeurIPS ’19]
What is Data Privacy?

FE/DMCFE: no leakage excepted the decrypted result
FHE: no leakage excepted the input/output for user
MPC/2-PC: no leakage excepted the output result

• What is the result?
 - the model (training phase), the inference (decision phase)

• The model contains information about the training set
 - the model owner will learn information about the training set

• Inference leaks information about the model
 - the data owner will learn information about the model
 - and then about the training set
Differential Privacy

To reduce information about the training set: noise addition

• Differential privacy
 - the output is indistinguishable whether any user A is in the set or not
 - the model does not leak individual data from the training set

• Cryptography: the protocol does not leak more than the output

• The training phase does not leak
 - any individual data from the training set to the model owner

• Inferences do not leak
 - any individual data from the training set to the client
 - the user’s input to the model owner
Conclusion

• Functional Encryption / DMCFE
 - can handle any statistics on data series
 - without interactions
 - with strong control on the authorized computations

• Fully Homomorphic Encryption
 - allows outsourced computations
 - without interactions (one-round query-answer)
 - but still several milliseconds per gate on the server-side

• Two-Party Computation / MPC
 - very versatile and quite efficient
 - but highly interactive

• But one has to take care about the information revealed by the result