

A safe & secure perspective on RISC-V and open-source hardware

Journées Nationales 2021 GDR Sécurité Informatique

Jérôme Quévremont RISC-V and open hardware project leader Thales Research & Technology

Thales's Mission

Sensing & data gathering

Data transmission & storage

Data processing & decision making

Wherever safety and security are critical, Thales delivers.

Together, we innovate with our customers to build smarter solutions. Everywhere.

Thales overview

over 81,000 employees

* Does not include externally financed R&D

Sales in 2020 **17** bn €

Thales: A Research and Development Powerhouse

Albert Fert
Scientific director of the
CNRS/Thales joint physics
unit and winner of the
2007 Nobel prize in
physics.

8 times winner 2012, 2013, 2015, 2016, 2017, 2018, 2019, **2020**

Expertise in a uniquely broad range of technical domains, from science to systems, applied across businesses.

An extensive intellectual property portfolio of 20,500 patents.

Context

- > ARM is the major player in the embedded processor market
- ➤ High licensing and royalty fees of ARM solutions + export risk

Open hardware: a credible FREE alternative

- RISC-V ISA initiative supported by 200+ members
- Credible alternative to the ARM ecosystem
- > Starting point for hardware implementations
 - Open source: OpenHW Group, CHIPS Alliance...
 - Commercial: SiFive, Andes, Gaisler, Alibaba, Microchip, GreenWaves, Western Digital, Nvidia...
- Industry is moving
 - PowerPC going open source
 - MIPS adopting RISC-V ISA
 - DARPA starts to mandate RISC-V

It took 15 years to Linux for massive adoption.

RISC-V has started in 2010

| Simple & modular ISA

Learning from legacy (ARM, Power, x86...)

Base: RV321, RV641

Standard extensions:

> M: multiply/divide

> A: atomic operations

> F, D, Q: floating-point

C: compressed instructions

M/S/U privilege levels

Virtual memory: \$v32, \$v39, \$v48

Extensions being prepared

bit manip, dynamically translated languages, SIMD, vector, hypervisor, crypto...

Room for custom/proprietary extensions

Base	Version	Status	
RVWMO	2.0	Ratified	
RV32I	2.1	Ratified	
RV64I	2.1	Ratified	
RV32E	1.9 Draft		
RV128I	1.7	Draft	
Extension	Version	Status	
M	2.0	Ratified	
\mathbf{A}	2.1	Ratified	
\mathbf{F}	2.2	Ratified	
D	2.2	Ratified	
\mathbf{Q}	2.2	Ratified	
\mathbf{C}	2.0	Ratified	
Counters	2.0	Draft	
L	0.0	Draft	
B	0.0	Draft	
J	0.0	Draft	
T	0.0	Draft	
P	0.2	Draft	
V	0.7	Draft	
Zicsr	2.0	Ratified	
Zifencei	2.0	Ratified	
Zam	0.1	Draft	
Ztso	0.1	Frozen	

Why Thales contributes to RISC-V and open-source HW

Software

Large ecosystem compatible across implementations

Security

A fully auditable processor

Safety

No black-box

SWaP & customization

Exact fit between features and application needs

Performance

State-of-the-art processor

No vendor-locking

A SME business to develop custom version is being established

Sovereignty

French / European ecosystem from design to production of SoC

01/07/2021

RISC-V Alliances & Foundations

Thales / template: 87211169-DOC-GRP-FR-003

French members of alliances

	OPENHW PROCESSOR IP	RISC-V	CHIPS ALLIANCE
Companies	THALES GREENWAVES TICHNOLOGIES DILPHIN DESIGN	THALES CORTUS GREENWAVES STECHNOLOGIES SECURE-IC THE SECURITY SCIENCE COMPANY	19
Research	cea	Ínría ces	2
Academy	13	GRANDE ECOLE D'INGÉNELES	8

Engaging in alliances, a good step towards international co-operations.

Building a future we can all trust

Organized by

- University year 2020-2021
- Goal: Improve CV32A6 (32b ARIANE) FPGA performance
- 13 teams from 10 academies
- Awards:
 - 1er prix: Télécom Paris (RISCy Business team)
 - Prix spécial du jury: Toulouse III (Agence Tous RISC)
- Preparing 2021-2022 edition

- Serving global business units
- OpenHW Group

- ➤ Co-Chair, Technical WG
- CVA6 (ARIANE) project leader and contributor
 - Turning ARIANE into an industrial-grade open-source IP ETH zürich
 - Configurable RISC-V application core: 32/64 bits, FPU or not...
 - Compatible with Linux and microkernels
 - Safe & secure orientation
 - FPGA-optimized version (softcore)
- RISC-V International RISC-V®

- Chair, Functional Safety special interest group (SIG-Safety)
- Member of TEE, security, virtual memory committees

Security at RISC-International

- Security committee: Identifies the needs
- Creates task groups: ISA extensions, crypto acceleration, trusted execution...
- ➤ Liaisons with: Global Platform, FIDO, Global Semiconductor Alliance, ETSI...
 - E.g.: work with Global Platform to adapt TEE API for other targets, like IoT
- Market segment and threat model analysis

Functional Safety at RISC-International

- Special interest group Functional Safety
- Identify the needs and evangelize specification TG
 - Current activity: white paper drafting

OSH and RISC-V perfect playgrounds for security research

- Access
 - RISC-V: Public and extendable instruction set
 - Several open-source cores (CHIPS Alliance, OpenHW Group, lowRISC...),
 - No NDA/licences needed to set up industry/academic co-operations
- Ability to reproduce results
- Perfect for public scrutiny, bug hunting

Specific challenges:

- > Flip side: weak solutions enable 0-day attacks
- Attackers could inject malware in open-source repositories

https://www.bleepingcomputer.com/news/security/linux-bans-university-of-minnesota-for-committing-malicious-code

Easier path to safety or security certification

With open-source verification artefacts (test plans, test benchs and sequences)

Increasing HW vulnerabilities

- Remember Spectre/Meltdown breakthrough
- ➤ Need stronger security assurance and resistance against analysis

Formal verification gaining momentum in RISC-V communities

- Propelled by open-source research on formal models and tools
 - SRI International, U. Cambridge, Bluespec, Yosys...
- Bring more trust: covering 100% of states/inputs/conditions

RISC-V Sail formal model

- RV32I, RV64I, common extensions (M, A...), privilege modes, virtual memory (Sv32, Sv39...), FP (partial)
- On-going work: "implementation choices", new extensions...

Examples of security applications

- Detect flaws: privilege escalation, gaps in data separation, exotic corner cases...
- Trojans
- ISA compliance

Links:

- RISC-V formal model written in Sail: https://github.com/rems-project/sail-riscv
- Sail tools: https://github.com/rems-project/sail
- Tutorial: https://github.com/rsnikhil/RISCV_ISA_Spec_Tour
- Yosys tools: https://github.com/YosysHQ

RISC-V crypto extensions

- On-going at RISC-V International
- Improve performance for common algorithms (AES, SHA...)
- https://wiki.riscv.org/display/TECH/Cryptographic+Extensions+TG

Architectural protection

- Adding countermeasures: HW, SW, compiler-assisted, enclaves...
- "Morpheus: A vulnerability-tolerant secure architecture based on ensembles of moving target defenses with churn"
 - Gallagher, M., Biernacki, L., Chen, S., Aweke, Z. B., Yitbarek, S. F., Aga, M.T., ... & Austin, T. (ASPLOS'19)
- "Keystone: An open framework for architecting trusted execution environments"
 - Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., Song, D. (EuroSys'20)

seL4

- ➤ A separating microkernel for security and safety
- > Formally verified, verified on RISC-V in 2020
- ➤ Implemented on ARIANE core (CV64A6)
- ➤ Gernot Heiser, U. South Wales & seL4 Foundation, https://sel4.systems
- ▶ RISC-V week 2021 keynote (https://open-src-soc.org/2021-03/media/slides/3rd-RISC-V-Meeting-2021-03-30-09h00-Gernot-Heiser.pdf)

FENCE.T

- Temporal fence to protect against SPECTRE-like attacks
- ➤ ARIANE custom extension
- ➤ Wistoff, N., Schneider, M., Benini, L., & Heiser, G. (2020). "Microarchitectural Timing Channels and their Prevention on an Open-Source 64-bit RISC-V Core."

- Hypervisor (H) privilege level
 - Not yet ratified
- Full SoC perspective, beyond the core
 - > Protecting memories, peripherals, interconnects
 - > Enforcing separation...

Tooling (GCC, LLVM...), IDE (Eclipse...), electronic CAD

Permanent RAM: new programming paradigm

Questions?

