# An Upcycling Tokenization Method for Credit Card Numbers

### Cyrius Nugier, **Diane Leblanc-Albarel**, Agathe Blaise, Simon Masson, Paul Huynh and Yris Brice Wandji Piugie

GDR Sécurité

July 2nd, 2021





• • = • • = •

## **REDOCS** : On the paper

#### Organisation

- 3 companies propose a challenge to solve.
- The doctoral students form 3 teams, one per company, depending on the subject that interests them.
- Each team is supervised by one or more members of the company.
- Each team then has four and a half days to work on the problem.
- 40 hours of work in the week.

## **REDOCS** : In practice

#### Work

- Discovery of new topics.
- Learn to use academic skills for solving real problems.
- Learning new things.
- Work in sprint mode.
- Much more than 40 hours of work.
- 40 hours of scientific courses for the doctoral school.





An Upcycling Tokenization Method for Credit Card Numbers

## **REDOCS** : In practice

#### Real life

- Meet new people.
- Learning new ways of thinking.
- Very pleasant environment.
- Seriousness but also a lot of fun.
- Social event.
- A productive week.





An Upcycling Tokenization Method for Credit Card Numbers

## Outline

### 1 Background

- Credit Card overview
- Tokenization System
- Specifications

### 2 Related work

- Static pre-computed table
- 3 Our work
  - Overview
  - Functionalities
  - Performances

### 4 Conclusion

Credit Card overview Tokenization System Specifications

## Challenges of online payments by credit card

#### Latest attacks

- Davinci breach, February 2019 (2.15 M stolen credit cards number).
- The Bigbadaboom-II<sup>1</sup>, March 2018.
- The Bigbadaboom-III, January 2020 (30 M stolen credit cards number).

<sup>1</sup>Compromised details released by FIN7 threat group  $\rightarrow \langle \square \rangle \land \exists \rightarrow \langle \exists \rightarrow \rangle \exists \rightarrow \langle \exists \rightarrow \rangle$ 

July 2nd, 2021

5/18

Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

Credit Card overview Tokenization System Specifications

Credit card Number formation (CCN)



Credit Card Numbers format.



Possible token format.

Tokenization System

## **Tokenisation System**



Life Cycle of a Token.

Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

æ July 2nd, 2021 7/18

∃ ► < ∃ ►</p>

< 一 →

Related work Our work Conclusion Credit Card overview Tokenization System Specifications

# Specifications

### Functional

- Unicity
- Uniformity
- Unlinkability
- Unforgeability

### Technical

- Expiry
- Formatting
- Timeframe
- Reusability
- Auditability



∃ → ∢

Credit Card overvie Tokenization Syster Specifications

# Specifications

### Functional

- Unicity
- Uniformity
- Unlinkability
- Unforgeability

#### Technical

- Expiry
- Formatting
- Timeframe
- Reusability
- Auditability



∃ → ∢

Specifications

# **Specifications**

### Functional

- Unicity
- Uniformity
- Unlinkability
- Unforgeability

#### Technical

- Expiry
- Formatting
- Timeframe
- Reusability
- Auditability



- 4 目 ト - 日 ト - 4

-

Related work Our work Conclusion Credit Card overview Tokenization System Specifications

# Specifications

### Functional

- Unicity
- Uniformity
- Unlinkability
- Unforgeability

### Technical

- Expiry
- Formatting
- Timeframe
- Reusability
- Auditability



< 17 ▶

★ Ξ →

Credit Card overview Tokenization System Specifications

# Specifications

#### Functional

- Unicity
- Uniformity
- Unlinkability
- Unforgeability

#### Technical

- Expiry
- Formatting
- Timeframe
- Reusability
- Auditability



э

Specifications

# **Specifications**

### Functional

- Unicity
- Uniformity
- Unlinkability
- Unforgeability

#### Technical

- Expiry
- Formatting
- Timeframe
- Reusability
- Auditability



∃ → ∢ э

Related work Our work Conclusion Credit Card overview Tokenization System Specifications

# Specifications

### Functional

- Unicity
- Uniformity
- Unlinkability
- Unforgeability

### Technical

- Expiry
- Formatting
- Timeframe
- Reusability
- Auditability



∃ → ∢

Related work Our work Conclusion Credit Card overview Tokenization System Specifications

# Specifications

### Functional

- Unicity
- Uniformity
- Unlinkability
- Unforgeability

#### Technical

- Expiry
- Formatting
- Timeframe
- Reusability
- Auditability



★ Ξ →

Related work Our work Conclusion Credit Card overview Tokenization System Specifications

# Specifications

### Functional

- Unicity
- Uniformity
- Unlinkability
- Unforgeability

### Technical

- Expiry
- Formatting
- Timeframe
- Reusability
- Auditability



∃ > .

Static pre-computed table

## Static pre-computed table

#### Defintion

Table of all possible token values computed in advance.

#### Problems

- No mechanism avoids the saturation of the table.
- Obligation to create a new table when the previous one is saturated.
- Lower performances over time.
- More and more memory needed.
- No encryption of the table.

**Overview** Functionalities Performances

# Our Solution : Upcycling Token Table

### Fixed size table

- Cleaning mechanism.
- Index by token number: Very fast (constant time lookup).
- Reusable token.

#### Lifespan and maximum number of use

- Maximum number of use for each token (clean once the maximum is reached).
- Lifespan (useful in cases of forgetfulness for example).
- Second database for a trace of all operations.

#### Encrypt

Each row encrypted with AES 256.

Related work Our work Overview

## Content of a row



Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

э 11/18July 2nd, 2021

э

Overview Functionalities Performances

## Tokenisation



Tokenisation.

Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

▶ ৰ ≣ ► ≣ ∽ ৭.৫ July 2nd, 2021 12/18

< ロ > < 回 > < 回 > < 回 > < 回 >

Overview Functionalities Performances

## Tokenisation



Tokenisation.

Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

▶ ৰ ≣ ► ≣ ∽ ৭.৫ July 2nd, 2021 12/18

< ロ > < 回 > < 回 > < 回 > < 回 >

Overview Functionalities Performances

## Tokenisation





#### Tokenisation.

Overview Functionalities Performances

## Tokenisation



Overview Functionalities Performances

## Tokenisation



Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

July 2nd, 2021 12/18

Overview Functionalities Performances

### Tokenisation



Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

July 2nd, 2021 12/18

Overview Functionalities Performances

### Detokenisation



Detokenisation.

Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

▶ ৰ ≣ ► ≣ ∽ ৭.৫ July 2nd, 2021 13/18

Overview Functionalities Performances

### Detokenisation



Detokenisation.

Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

▶ ৰ ≣ ► ≣ ∽ ৭.৫ July 2nd, 2021 13/18

Overview Functionalities Performances

### Detokenisation



#### Detokenisation.

An Upcycling Tokenization Method for Credit Card Numbers

Overview Functionalities Performances

### Detokenisation



Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

▶ ৰ ≣ ► ≣ ∽ ৭.৫ July 2nd, 2021 13/18

Overview Functionalities Performances

### Detokenisation



Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

▶ ৰ ≣ ► ≣ ∽ ৭.৫ July 2nd, 2021 13/18

Overview Functionalities Performances

## Clean table



An Upcycling Tokenization Method for Credit Card Numbers

Overview Functionalities Performances

## Probability of failure

#### Number of token according to $\lambda$

- T Number of tries per timeframe.
- $n_{max}$  Number of available tokens (10<sup>8</sup>).
  - n Number of token inserted.

Probability of failure given a fixed threshold :

$$\left(\frac{n}{n_{\max}}\right)^T < \frac{1}{2^{\lambda}} \iff n < 2^{\log_2(n_{\max}) - \frac{\lambda}{T}}.$$

### Probability of failure lower than $\frac{1}{2^{128}}$

With  $T = 70\ 000$ , maximum table fill rate: **99.8733%** 

 $\rightarrow$  The limit is the 8-digit model, not the implementation

Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

Overview Functionalities Performances

## Experiments

#### Environment

- AMD EPYC 7742 Processor.
- 3240.029MHz.

### Results

- table fill rate : > 99.987%.
- Tries before first failure :  $\approx$  70 250.
- Detokenisation time : 6µ per token.
- RAM used : 25 GB.

Diane Leblanc-Albarel

• • = • • = •

## Take away

#### Significant improvement

- Average of 1 billion credit card transactions per day worldwide (i.e., 11 574 transactions per second, 7M per 10 min).
- Our construction covers **6.5 times** the current number of transactions.
- With a 10-minute token lifespan, at maximum token creation speed: maximum of 45 million valid tokens can be in the table at any given time.

医下子 医

### Thank you for you attention

## Do you have any questions?

Contact authors : cnugier@laas.fr diane.leblanc-albarel@irisa.fr

Diane Leblanc-Albarel

An Upcycling Tokenization Method for Credit Card Numbers

э July 2nd, 2021 18/18