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Security of Communications
• One ever wanted to exchange information securely
• With the all-digital world, security needs are even 

stronger: communication devices are
• in your pocket

• at home
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Provable Security
• If the adversary A can win the security game G 

    within time t with probability !

Win
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Provable Security
• If the adversary A can win the security game G 

    within time t with probability !
• A simulator S can break the problem P 

    within time t’ with probability !’
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Provable Security
• If the adversary A can win the security game G 

    within time t with probability ! 
• A simulator S can break the problem P 

    within time t’ with probability !’

• Experiments give bounds on the best possible success 
probability !’’ within a time bound t’ on the problem P 

• We all agree on some safe assumptions: 
   within a time bound t, no adversary can break P  
   with probability greater than ! 

• We eventually obtain bounds on the best possible adversary A
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Provable Security
This methodology with a security game can be applied to any 
cryptographic primitive or protocol:
• Encryption: with semantic security
• Signature scheme: with unforgeability
• Authenticated key exchange: with privacy and authenticity
• etc

Privacy-Preserving Computations
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The Cloud: Access Anything from Anywhere

One can store
• Documents to share
• Pictures to edit
• Databases to query
and access from everywhere
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Security Requirements

As from a local hard drive/server, one expects 
Storage guarantees 
Privacy guarantees 

confidentiality of the data 
anonymity of the users 
obliviousness of the queries/processing 

How to proceed?
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Confidentiality vs Sharing & Computations
Usual Encryption schemes protect data 
E.g. either symmetric encryption, where  and then  
           or asymmetric encryption, where  and then  
Only the knowledge of the decryption key (either  or ) allows to get  
• the provider stores the ciphertexts without any information about the messages 
• nobody can access them either, except the owner/target receiver

c = "sk(m) m = #sk(c)
c = "pk(m) m = #dk(c)

sk dk m

Privacy by Design
How to outsource computations - How to share the results

without decrypting the data?
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Broadcast Encryption
[Fiat-Naor - Crypto ‘94]
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Broadcast Encryption

The sender chooses a target set

[Fiat-Naor - Crypto ‘94]
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Broadcast Encryption

The sender chooses a target set

[Fiat-Naor - Crypto ‘94]
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Broadcast Encryption

The sender chooses a target set
Users get all-or-nothing about the data

[Fiat-Naor - Crypto ‘94]
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Sharing to a Target Set 
but No Computations!
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Homomorphic Encryption
Encryption of a bit : , for random integers  

 can be seen as a random mask, even for a fixed secret 
b c = "(b) := b + 2r + qp q, r

k = 2r + qp p
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• #(c) := (c mod p) mod 2 = b + 2r mod 2 = b
• "(b) + "(b′ ) = (b + 2r + qp) + (b′ + 2r′ + q′ p)

= (b ⊕ b′ ) + 2(r + r′ + b ⋅ b′ ) + q′ ′ p
= "(b ⊕ b′ )  if r + r′ + 1 < p/2

• Noise:  grows slowly (sum)r′ ′ = r + r′ + b ⋅ b′ 

• Secret key: large integer p
• Additively homomorphic
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Homomorphic Encryption

• "(b) × "(b′ ) = (b + 2r + qp) × (b′ + 2r′ + q′ p)
= (b ⋅ b′ ) + 2(rb′ + r′ b + 2rr′ ) + q′ ′ p
= "(b ⋅ b′ )  if r + r′ + 2rr′ < p/2

• Noise:  grows very fast (product)r′ ′ = rb′ + r′ b + 2rr′ 

• Encryption: small random noise , large random r q
• Multiplicatively homomorphic
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"(b) + "(b′ ) = "(b XOR b′ ) "(b) × "(b′ ) = "(b AND b′ )
"(b) + 1 = "(NOT b)

c = "(b) := b + 2r + qp

⟹  any Boolean circuit

[DGHV - Eurocrypt ’10]
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Inputs OutputsCircuit

AND

OR

NOTOR

AND

NOT

Additive + Multiplicative Homomorphisms allow any Bolean operation
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[Gentry - STOC ’09]

Somewhat Homomorphic Encryption

Auxiliary Inputs
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Circuit
EAND

EOR

ENOT

EOR

EAND

ENOT

Additive + Multiplicative Homomorphisms allow any Bolean operation
But the depth of the circuit increases the noise: limited computations

Encrypted 
Inputs

Encrypted
Outputs
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[Gentry - STOC ’09]

Somewhat Homomorphic Encryption

Auxiliary Inputs
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Decryption 
Key mDecryption

AND

OR

NOTOR

AND

NOT
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[Gentry - STOC ’09]

Bootstrapping: Fully Homomorphic Encryption

Ciphertext: 
C = "(m)
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Decryption
EAND

EOR

ENOT

EOR

EAND

ENOT

With a "virtual" decryption: one reduces the noise
Fully Homomorphic Encryption: any computation!

Encrypted 
Decryption 
Key

C′ = "(m)
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[Gentry - STOC ’09]

Bootstrapping: Fully Homomorphic Encryption

Ciphertext: 
C = "(m)
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Outsourced Computations
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Encrypted 
Outputs

Outsourced Computations
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Outputs

Encrypted 
Outputs

Outsourced Computations

14

Encrypted 
Inputs

Inputs

Circuit
EAND

EOR

ENOT

EOR

EAND

ENOT



David Pointcheval

Outputs

Encrypted 
Outputs

Outsourced Computations
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Encrypted 
Inputs

Inputs

Circuit
EAND

EOR

ENOT

EOR

EAND

ENOT

no information 
about the inputs/outputs

Any computation 
But no possible sharing!

FHE allows
• Any computation 

   on private inputs
• Private « googling »
SNARGs: Succinct Proofs 
of correct computation
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Functional Encryption

15

[Boneh-Sahai-Waters - TCC ‘11]
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Functional Encryption

The authority generates functional decryption keys dkf  
    according to functions f
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Functional Encryption

The authority generates functional decryption keys dkf  
    according to functions f
• From C = Encrypt(x), Decrypt(dkf, C) outputs f(x)
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[Boneh-Sahai-Waters - TCC ‘11]
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Functional Encryption

The authority generates functional decryption keys dkf  
    according to functions f
• From C = Encrypt(x), Decrypt(dkf, C) outputs f(x)
• This allows controlled sharing of data
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[Boneh-Sahai-Waters - TCC ‘11]

Result in clear 
for a Specific Function 

for Specific Users
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Functional Encryption is Powerful
Functional Encryption allows access control, from C = Encrypt(x || U)

• with fid(x || U) = (if id = U, then x, else !): identity-based encryption
• with fid(x || U) = (if id ∈ U, then x, else !): broadcast encryption
but this is still all-or-nothing

Functional Encryption allows computations:
• any function f : in theory, with iO (Indistinguishable Obfuscation)
• concrete functions:

inner product, from C = Encrypt( ), ⃗x f ⃗y ( ⃗x ) = ⃗x ⋅ ⃗y
quadratic functions, from C = Encrypt( ), ⃗x , ⃗y fQ( ⃗x , ⃗y ) = ⃗x ⊤ ⋅ Q ⋅ ⃗y
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FE: Inner Product
Time series data:  
A few distinct linear statistic parameters  to get 

⃗xt ⃗ai ⃗ai ⋅ ⃗xt
• Each time period,  is encrypted⃗xt
• For each parameter , the decryption key  is generated⃗ai dki
Can be done from any linearly homomorphic encryption:

Master Secret Key: sk = ⃗s, Functional Decryption Key: dk ⃗y = ⃗s ⋅ ⃗y
Encryption of  ⃗x : c0 = r, ⃗c = ⃗x + r ⋅ ⃗s,  for random r
Decryption:  ⃗c ⋅ ⃗y = ⃗x ⋅ ⃗y + r ⋅ ⃗s ⋅ ⃗y = ⃗x ⋅ ⃗y + r ⋅ dk ⃗y
One-time pad: insecure… but can be made secure with ElGamal, Regev, etc 
                               (based on Discrete Logarithm, Lattices, etc)

17

[Abdalla-Bourse-De Caro-P. - PKC ’15]
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Multi-Client Functional Encryption
• one key limits to one function on any vector

• a unique sender only can encrypt all the inputs
Multi-Client Functional Encryption (MCFE)
Client  generates  for the time period  
    ⇒ only one ciphertext for each index  and each time period  
    ⇒ all the individual ciphertexts globally encrypt 

Cj "(t, j, xt,j) t
j t

⃗xt

• still a unique authority for the functional key generation
Decentralized Multi-Client Functional Encryption (DMCFE)
With Independent and Distrustful Clients

18
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Decentralized MCFE

19

[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt ’18]
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Decentralized MCFE
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Decentralized MCFE

• KeyGen( ) → secret key ski and encryption key eki for client i i
• Encrypt(eki,+,xi) → ci = E(eki,+,xi) for the label + (or time period t)
• DKeyGen((ski)i,f) → dkf

• Decrypt(dkf,+,C) → f(x) if C = (ci = E(eki,+,xi))i

20

• Encrypt/Decrypt are non-interactive algorithms
• KeyGen/DKeyGen might be interactive protocols between the clients

• but should be one-round protocols only

[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt ’18]
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DMCFE: Concrete Case

• Insurance companies: list of damages
• Each individual line is quite sensitive: cannot be shared

encrypted by each company every month
• Monthly totals are valuable for everybody

functional key for each sub-total: generated together once for all
can be applied every month, on fresh ciphertexts, without interactions
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Jan 2020 Theft Fire Water Auto Falls

Co. 1 10 2 5 1 0

Co. 2 3 1 8 0 3

Co. 3 8 3 15 2 1

Total 21 6 28 3 4

Feb 2020 Theft Fire Water Auto Falls

Co. 1 7 1 8 3 1

Co. 2 7 1 2 3 2

Co. 3 3 2 10 1 4

Total 17 4 20 7 7

Feb 2020 Theft Fire Water Auto Falls

Co. 1 7 1 8 3 1

Co. 2 7 1 2 3 2

Co. 3 3 2 10 1 4

Total 17 4 20 7 7
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Multi-Party Computation

Cloud = possible interactions between the parties
• Private computation with a Trusted Third Party
• MPC = without any TTP

only interactions between the players with their secrets
no additional information leaks
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[Yao - 1982]

input output

input output input output

input output

input output input output
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2-PC and Machine Learning
Two-Party Computation = Particular case of MPC
• data owner vs. model owner
• can be applied to federated learning

Main ingredients:
• secret sharing
• comparisons: activation function
Multiple iterations until the secret is reconstructed:
• multiple layers in the network
• multiple data sources for training

23

[Ryffel-Tholoniat-P.-Bach - arXiv ’20]



David Pointcheval

FHE/FE and Machine Learning
Fully Homomorphic Encryption: any function
• one can apply a private model on private data for a client
• one can help a client to refine a model with private data
Functional Encryption: only quadratic functions
• quadratic activation function (instead of classical ReLU)
• one hidden layer only: the output is in clear
Experiments on the MNIST Data Set
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[Ryffel-Dufour Sans-Gay-Bach-P. - NeurIPS ’19]
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What is Data Privacy?
FE/DMCFE: no leakage excepted the decrypted result
FHE: no leakage excepted the input/output for user
MPC/2-PC: no leakage excepted the output result
• What is the result?

the model (training phase), the inference (decision phase)
• The model contains information about the training set

the model owner will learn information about the training set
• Inference leaks information about the model

the data owner will learn information about the model
and then about the training set
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Differential Privacy
To reduce information about the training set: noise addition
• Differential privacy

the output is indistinguishable whether any user A is in the set or not
the model does not leak individual data from the training set

• Cryptography: the protocol does not leak more than the output

• The training phase does not leak
any individual data from the training set to the model owner

• Inferences do not leak
any individual data from the training set to the client
the user’s input to the model owner
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Conclusion
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• Functional Encryption / DMCFE
can handle any statistics on data series
without interactions
with strong control on the authorized computations

• Fully Homomorphic Encryption
allows outsourced computations
without interactions (one-round query-answer)
but still several milliseconds per gate on the server-side

• Two-Party Computation / MPC
very versatile and quite efficient
but highly interactive

• But one has to take care about the information revealed by the result


