Proofs of Security Protocols

Symbolic Methods and Powerful Attackers

Charlie Jacomme,
supervised by Hubert Comon and Steve Kremer
June 30th, 2021

Introduction

Introduction?

Do I really need to introduce security and privacy?

Introduction

One of the biggest lesson of my thesis

Introduction

One of the biggest lesson of my thesis

Privacy matters

Privacy

Many people NEED privacy to live:

- Homosexuality is a crime in 69 countries.
- Citizens in authoritarian countries (journalist, political opponents).
- Discrimination (origins, health, religion,...) for loans, health insurances, employment. . .
- Uighurs currently tracked in China.

Privacy

Many people NEED privacy to live:

- Homosexuality is a crime in 69 countries.
- Citizens in authoritarian countries (journalist, political opponents).
- Discrimination (origins, health, religion,...) for loans, health insurances, employment. . .
- Uighurs currently tracked in China.

But what if I have nothing to hide?

Nothing to hide. . .

1. If we don't have privacy, people that need it can't have it.

Nothing to hide. . .

1. If we don't have privacy, people that need it can't have it.
2. Most people actually have something to hide.

- Should my boss know what I do on my free time? Or what is the global income of my household?
- Should my government know my political opinions?
- Should my mail provider know my illness?

Nothing to hide. . .

1. If we don't have privacy, people that need it can't have it.
2. Most people actually have something to hide.

- Should my boss know what I do on my free time? Or what is the global income of my household?
- Should my government know my political opinions?
- Should my mail provider know my illness?

3. The simple fact of being watched changes unconsciously our behaviour.

- Philosophical and sociological theories (Foucault, Deleuze, Guattari,...), and fictional examples (Orwell, Damosio,...)

Guarantees

Security and Privacy Matter !

Guarantees

Security and Privacy Matter !

For each possible use case, we should know exactly who can access what, whether it is a stranger, a government or a corporation.

Guarantees

Security and Privacy Matter !

Which guarantees, for which attacker?

Guarantees

Security and Privacy Matter !

Which formal guarantees, for which attacker?

The difficulty

Protocols

The difficulty

Primitives Protocols

$x^{2} \rightleftarrows$

The difficulty

Implementation Primitives Protocols

The difficulty

OS Implementation Primitives Protocols

The difficulty

The difficulty

The difficulty

If any link of the chain is broken, everything is.

Symbolic Model
 VS Computational Model

Second difficulty - How to model the attacker ?

Symbolic Model

adversary $=$ fixed set of possible actions

VS Computational Model

$$
\text { adversary }=\text { any program }
$$

Second difficulty - How to model the attacker ?

Symbolic Model

adversary $=$ fixed set of possible actions

VS Computational Model

$$
\text { adversary }=\text { any program }
$$

Symbolic Model

adversary $=$ fixed set of possible actions

VS Computational Model

$$
\text { adversary }=\text { any program }
$$

Symbolic Model

adversary $=$ fixed set of possible actions

VS Computational Model

$$
\text { adversary }=\text { any program }
$$

Symbolic Model

adversary $=$ fixed set of possible actions

VS Computational Model

$$
\text { adversary }=\text { any program }
$$

Hard automation - strong guarantees

My lines of work

The core of my PhD
Make it easier to prove protocols against attackers as powerful as possible.

My lines of work

The core of my PhD
Make it easier to prove protocols against attackers as powerful as possible.

- Make the symbolic model more precise (detailed threat models);

My lines of work

The core of my PhD
Make it easier to prove protocols against attackers as powerful as possible.

- Make the symbolic model more precise (detailed threat models);
- enable proofs of compound protocols in the computational model:
- compositional proofs,
- mechanization,
- proof automation.

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication;

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication;
2. a prototype of a mechanized prover in the BC logic;

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication;
2. a prototype of a mechanized prover in the BC logic;
3. composition results to allow modular proofs of complex protocols in the computational model;

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication;
2. a prototype of a mechanized prover in the BC logic;
3. composition results to allow modular proofs of complex protocols in the computational model;
4. symbolic methods for deciding basic proof steps in computational proofs, formulated as problems on probabilistic programs.

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication; Part I - just a taste of the methodology
2. a prototype of a mechanized prover in the BC logic;
3. composition results to allow modular proofs of complex protocols in the computational model;
4. symbolic methods for deciding basic proof steps in computational proofs, formulated as problems on probabilistic programs.

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication; Part I - just a taste of the methodology
2. a prototype of a mechanized prover in the $B C$ logic; Part II - big ideas of the BC logic \& Squirrel
3. composition results to allow modular proofs of complex protocols in the computational model;
4. symbolic methods for deciding basic proof steps in computational proofs, formulated as problems on probabilistic programs.

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication; Part I - just a taste of the methodology
2. a prototype of a mechanized prover in the $B C$ logic; Part II - big ideas of the BC logic \& Squirrel
3. composition results to allow modular proofs of complex protocols in the computational model; Part III - presentation of the framework
4. symbolic methods for deciding basic proof steps in computational proofs, formulated as problems on probabilistic programs.

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication; Part I - just a taste of the methodology
2. a prototype of a mechanized prover in the $B C$ logic; Part II - big ideas of the BC logic \& Squirrel
3. composition results to allow modular proofs of complex protocols in the computational model; Part III - presentation of the framework
4. symbolic methods for deciding basic proof steps in computational proofs, formulated as problems on probabilistic programs.
Not presented. (decidability of universal equivalence between programs over finite fields; library integrated into EasyCrypt and MaskVerif)

Second Factor

Make the symbolic model more precise Second factor authentication

A case study : Second Factor authentication

How to improve passwords (which are weak)
Use a second factor to confirm login, either a smartphone or a dedicated token.

A case study : Second Factor authentication

How to improve passwords (which are weak)
Use a second factor to confirm login, either a smartphone or a dedicated token.
Considered protocols:

- Google 2 Step (Verification code, Single Tap, Double Tap)
- FIDO's U2F (Google, Facebook, Github, Dropbox,...)

Main ideas

A case study ${ }^{1}$ of Google 2 Step and FIDO's U2F.

- Many different detailed threat models;
- malware on the phone,
- keylogger on the computer,
- weak SMS channel,
- model the full authentication system;
- completely automated analysis of all scenarios;
- simple, small modifications (adding info to display) that enhance security.

[^0]
Main ideas

A case study ${ }^{1}$ of Google 2 Step and FIDO's U2F.

- Many different detailed threat models;
- malware on the phone,
- keylogger on the computer,
- weak SMS channel,
- model the full authentication system;
- completely automated analysis of all scenarios;
- simple, small modifications (adding info to display) that enhance security.

[^1]
Main ideas

A case study ${ }^{1}$ of Google 2 Step and FIDO's U2F.

- Many different detailed threat models;
- malware on the phone,
- keylogger on the computer,
- weak SMS channel,
- model the full authentication system;
- completely automated analysis of all scenarios;
- simple, small modifications (adding info to display) that enhance security.
$\rightarrow 6172$ (non-redundant) scenarios analysed by PROVERIF
${ }^{1}$ C. Jacomme and S. Kremer, CSF'18 \& ACM TOPS

Results

Pros of U2F

- A possibility of privacy.
- Strong protection against phishing.

Cons of U2F

- No feedback to the user, cannot verify what is validated.
- Not independent from the computer, risk of malwares.

An introduction to the BC logic

Protocol and properties

A protocol

$$
A \xrightarrow{\langle r, \operatorname{sign}(r, k e y)\rangle} B
$$

Protocol and properties

A protocol

$$
A \xrightarrow{\langle r, \operatorname{sign}(r, \text { key })\rangle} B
$$

Checks the signature

Protocol and properties

A protocol

$$
A \xrightarrow{\langle r, \operatorname{sign}(r, k e y)\rangle} B
$$

Checks the signature

Protocol and properties

A protocol

$$
A \xrightarrow{\langle r, \operatorname{sign}(r, k e y)\rangle} \begin{array}{ll}
& B \\
& \mid \text { Checks the signature }
\end{array}
$$

Security property

- Authentication - whenever B accepts, the message that B received was sent by A.

A quick introduction to the BC logic

A protocol

$$
A \xrightarrow{\langle r, \operatorname{sign}(r, k e y)\rangle} B
$$

Checks the signature

A quick introduction to the BC logic

A protocol

$$
A \xrightarrow{\langle r, \operatorname{sign}(r, \text { key })\rangle} B
$$

Checks the signature

$$
\stackrel{<c k ", r>}{\leftarrow}
$$

In BC
Protocols are modelled with sequences of terms:

$$
\phi_{0}:=\langle r, \operatorname{sign}(r, \text { key })\rangle
$$

A quick introduction to the BC logic

A protocol

$$
A \xrightarrow{\langle r, \operatorname{sign}(r, \text { key })\rangle} B
$$

Checks the signature

$$
\stackrel{<c o k ", r>}{\leftarrow}
$$

In BC
Protocols are modelled with sequences of terms:

$$
\begin{aligned}
& \phi_{0}:=\langle r, \operatorname{sign}(r, \text { key })\rangle \\
& \quad \text { if }\left(\operatorname{checksign}\left(\operatorname{snd}\left(g_{0}\left(\phi_{0}\right)\right), p k(\text { key })\right)\right)=\mathrm{fst}\left(g_{0}\left(\phi_{0}\right)\right) \text { then } \\
& \phi_{1}:=\phi_{0}, \quad<" o k ", \operatorname{fst}\left(g_{0}\left(\phi_{0}\right)\right)>
\end{aligned}
$$

A quick introduction to the BC logic

A protocol

$$
A \xrightarrow{\langle r, \operatorname{sign}(r, k e y)\rangle} B
$$

Checks the signature

In BC
Protocols are modelled with sequences of terms:

$$
\begin{aligned}
& \phi_{0}:=\langle r,\operatorname{sign}(r, \text { key })\rangle \\
& \quad \text { if }\left(\operatorname{checksign}\left(\operatorname{snd}\left(g_{0}\left(\phi_{0}\right)\right), p k(\text { key })\right)\right)=\mathrm{fst}\left(g_{0}\left(\phi_{0}\right)\right) \text { then } \\
& \phi_{1}:=\phi_{0}, \quad<" o k ", \operatorname{fst}\left(g_{0}\left(\phi_{0}\right)\right)>
\end{aligned}
$$

A quick introduction to the BC logic

A protocol

$$
A \xrightarrow{\langle r, \operatorname{sign}(r, \text { key })\rangle} B
$$

Checks the signature

$$
\stackrel{<" o k ", r>}{\leftarrow}
$$

Attacker inputs represented with non instantiated function symbol
In BC
Protocols are modelled with sequences of terms:

$$
\begin{aligned}
& \phi_{0}:=\langle r, \operatorname{sign}(r, \text { key })\rangle \\
& \quad \text { if }\left(\operatorname{checksign}\left(\operatorname{snd}\left(g_{0}\left(\phi_{0}\right)\right), p k(\text { key })\right)\right)=\mathrm{fst}\left(g_{0}\left(\phi_{0}\right)\right) \text { then } \\
& \phi_{1}:=\phi_{0}, \quad<" o k ", \operatorname{fst}\left(g_{0}\left(\phi_{0}\right)\right)>
\end{aligned}
$$

A quick introduction to the BC logic

How to reason on terms?
A first order logic built over a predicate that captures indistinguishability:

$$
t_{1} \sim t_{2}
$$

A quick introduction to the BC logic

How to reason on terms?
A first order logic built over a predicate that captures indistinguishability:

$$
t_{1} \sim t_{2}
$$

Indistinguishability

- A generic way to express all security properties.
- Any attacker can only distinguish between t_{1} and t_{2} with negligible probability.

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.
EUF-CMA

$$
\begin{aligned}
& \operatorname{checksign}(t, p k(\text { key })))=m \Rightarrow \\
& \qquad \bigvee_{\operatorname{sign}(x, \text { key }) \in \operatorname{St}(t)}(t=\operatorname{sign}(x, \text { key }) \wedge x=m)
\end{aligned}
$$

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.
EUF-CMA

$$
\begin{aligned}
& \operatorname{checksign}(t, p k(\text { key })))=m \Rightarrow \\
& \qquad \bigvee_{\operatorname{sign}(x, \text { key }) \in \operatorname{St}(t)}(t=\operatorname{sign}(x, \text { key }) \wedge x=m)
\end{aligned}
$$

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.
EUF-CMA

$$
\begin{aligned}
& \operatorname{checksign}(t, p k(\text { key })))=m \Rightarrow \\
& \qquad \bigvee_{\operatorname{sign}(x, \text { key }) \in \operatorname{St}(t)}(t=\operatorname{sign}(x, \text { key }) \wedge x=m)
\end{aligned}
$$

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.
EUF-CMA

$$
\begin{aligned}
& \operatorname{checksign}(t, p k(\text { key })))=m \Rightarrow \\
& \qquad \bigvee_{\operatorname{sign}(x, \text { key }) \in \operatorname{St}(t)}(t=\operatorname{sign}(x, \text { key }) \wedge x=m)
\end{aligned}
$$

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.
EUF-CMA

$$
\begin{aligned}
& \operatorname{checksign}(t, p k(\text { key })))=m \Rightarrow \\
& \qquad \bigvee_{\operatorname{sign}(x, \text { key }) \in \operatorname{St}(t)}(t=\operatorname{sign}(x, \text { key }) \wedge x=m)
\end{aligned}
$$

A mechanized prover for the BC logic

Issues of the BC logic

Downsides of the BC logic

- To perform proofs, we have to look at all executions of the protocol, i.e., all possible sequences of terms.

Issues of the BC logic

Downsides of the BC logic

- To perform proofs, we have to look at all executions of the protocol, i.e., all possible sequences of terms.
- Proofs are tedious to perform by hand.

Issues of the BC logic

Downsides of the BC logic

- To perform proofs, we have to look at all executions of the protocol, i.e., all possible sequences of terms.
- Proofs are tedious to perform by hand.

Issues of the BC logic

Downsides of the BC logic

- To perform proofs, we have to look at all executions of the protocol, i.e., all possible sequences of terms.
- Proofs are tedious to perform by hand.
- Proofs only for a bounded number of sessions.

Our contributions ${ }^{2}$

- A meta-logic over BC , that allows to talk abstractly about executions of the protocol.
${ }^{2}$ D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S\&P'21

Our contributions ${ }^{2}$

- A meta-logic over BC, that allows to talk abstractly about executions of the protocol.
- An interactive prover for this meta-logic.

[^2]
Our contributions ${ }^{2}$

- A meta-logic over BC, that allows to talk abstractly about executions of the protocol.
- An interactive prover for this meta-logic.
The Squirrel Prover
${ }^{2}$ D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S\&P'21

```
Applications v Emplacements v Emacs v
signature sign,checksign,pk
abstract ok : message
abstract error : message
name key : message
name r : index -> message
channel c
process A(i:index)=
    out(c, <r(i),sign(r(i),key)>)
process B =
    in(c,x);
    if checksign(snd(x),pk(key)) = fst(x) then
        out(c,<fst(x),ok>)
    else out(c,error)
system (!_i A(i) | !_i B).
```

Applications v Emplacements v Emacs v
nature sign,checksig
abstract ok : message
abstract error : message
name key : message
name r : index $->$ message
channel c
process $\mathrm{A}(\mathrm{i}:$ index) $=$
out(c, <r(i),sign(r(i),key)>)
process $\mathrm{B}=$
in(c, x) ;
if checksign(snd(x),pk(key)) = fst(x) then
out ($\mathrm{c},<\mathrm{fst}$ (x), ok>)
else out(c,error)
system (!_i A(i) | !_i B).

Applications v Emplacements v Emacs v

Lun. 15.45

```
abstract ok : message
abstract error : message
name key : message
name r : index >> message
channel c
process A(i:index)=
    out(c, <r(i),sign(r(i),key)>)
process B =
    in(c,x)
    if checksign(snd(x),pk(key)) = fst(x) then
        out(c,<fst(x),ok>)
    else out(c,error)
system (!_i A(i) | !_i B).
goal auth
    forall (i:index)
        cond@B(i) =>
            exists (j:index),
                A(j) < B(i)
                &&& fst(input@B(i)) = fst(output@A(j)).
Proof
```

simpl.
[goal> Focused goal (1/1): System: default/both
Variables: i:index
H0: condeB(i)
exists (j:index), ($A(j)<B(i) \& \&$ fst(input@B(i)) $=$ fst(output@A(j)))
U:\&*. *goals* All (1,0) (squirrel goals +2 [2])

Applications v Emplacements vemacs v

lun. 15.45
15.45
[goal> Focused goal (1/1): System: default/both
Variables: i,il:index
M0: checksign(snd(input@B(i)),pk(key)) = fst(input@B(i))
M1: $\mathrm{r}(\mathrm{i} 1)=$ fst(input@B(i))
T0: $A(i 1)<B(i)$
exists (j:index), $(A(j)<B(i) \& \&$ fst(input $@ B(i))=$ fst(output@A(j)))
U:\%*- *goals* All (1,0) (squirrel goals +2 [2])

Applications v Emplacements vemacs v

lun. 15.45
[goal> Goal auth is proved

```
abstract ok : message
abstract error : message
name key : message
name r : index -> message
channel c
process A(i:index) =
    out(c, <r(i),sign(r(i),key)>)
process B =
    in(c,x);
    if checksign(snd(x),pk(key)) = fst(x) then
        out(c,<fst(x),ok>)
    else out(c,error)
system (!_i A(i) | !_i B).
goal auth
    forall (i:index)
        cond@B(i) =>
            exists (j:index),
                A(j) < B(i)
                && fst(input@B(i)) = fst(output@A(j)).
Proof
simpl
expand cond@B(i).
euf M0.
exists il.
Qed.
```

U:\&\%. *goals* All (1,0) (squirrel goals +2 [2])

More details?

https://squirrel-prover.github.io/

A compositional framework inside the computational model

Composition?

The goal
To be able to make the proof of a composed protocol as a composition of proofs:

- smaller,
- reusable,
- and modular proofs.

Composition?

The goal
To be able to make the proof of a composed protocol as a composition of proofs:

- smaller,
- reusable,
- and modular proofs.

Top-down vs bottom-up

- Prove components universally secure (UC), and combine them together.
- Split a protocol into multiple components, and prove them secure in the context.

Composition?

The goal
To be able to make the proof of a composed protocol as a composition of proofs:

- smaller,
- reusable,
- and modular proofs.

Top-down vs bottom-up

- Prove components universally secure (UC), and combine them together.
- Split a protocol into multiple components, and prove them secure in the context.

Composition?

The goal
To be able to make the proof of a composed protocol as a composition of proofs:

- smaller,
- reusable,
- and modular proofs.

Top-down vs bottom-up

- Prove components universally secure (UC), and combine them together.
- Split a protocol into multiple components, and prove them secure in the context.

Limitations of the state of the art
Shared secrets and state passing and usability.

Our contributions

The composition framework ${ }^{3}$

- Handles parallel and sequential composition; unlike Blanchet, CSF'18, or Brzuska et al., CCS'11
${ }^{3}$ H. Comon, C. Jacomme and G. Scerri. CCS'20

Our contributions

The composition framework ${ }^{3}$

- Handles parallel and sequential composition; unlike Blanchet, CSF'18, or Brzuska et al., CCS'11
- allows to consider protocols with state passing and long term shared secrets; unlike Brzuska et al., ASIACRYPT'18

[^3]
Our contributions

The composition framework ${ }^{3}$

- Handles parallel and sequential composition; unlike Blanchet, CSF'18, or Brzuska et al., CCS'11
- allows to consider protocols with state passing and long term shared secrets; unlike Brzuska et al., ASIACRYPT'18
- allows to reduce the security of multiple sessions to the security of a single one;

[^4]
Our contributions

The composition framework ${ }^{3}$

- Handles parallel and sequential composition; unlike Blanchet, CSF'18, or Brzuska et al., CCS'11
- allows to consider protocols with state passing and long term shared secrets; unlike Brzuska et al., ASIACRYPT'18
- allows to reduce the security of multiple sessions to the security of a single one;
- naturally translates to the BC logic, and allows for the first time to perform proofs for an unbounded number of sessions with this logic.

[^5]
A classical proof technique

\mathcal{A} is trying to break protocol \mathcal{P}, while also having access to \mathcal{Q}.

A classical proof technique

\mathcal{A} is trying to break protocol \mathcal{P}, while also simulating \mathcal{Q}.

A classical proof technique

\mathcal{A} is trying to break protocol \mathcal{P}, while also simulating \mathcal{Q}.

A classical proof technique

\mathcal{A} is trying to break protocol \mathcal{P}, while also simulating \mathcal{Q}.

A classical proof technique

\mathcal{A} is trying to break protocol \mathcal{P}, while also simulating \mathcal{Q}.

Simulation

The main idea
If \mathcal{A} can simulate it, i.e., produce exactly all the same messages:
we remove Q from the picture!

Simulation

The main idea
If \mathcal{A} can simulate it, i.e., produce exactly all the same messages:
we remove Q from the picture!

The difficulty
If P and Q share some secret key, \mathcal{A} cannot simulate messages which require key.
$\mathrm{P}=$ version 1 of the previous protocol

$$
A \xrightarrow{\operatorname{sign}\left(\left\langle r,{ }^{\prime} v_{1} "\right\rangle, \text { key }\right)} B
$$

| Checks the signature
$\mathrm{Q}=$ version 2 of the previous protocol

$$
A \xrightarrow{\operatorname{sign}\left(\left\langle r, " v v_{2} "\right\rangle, \text { key }\right)} B
$$

Checks the signature

$$
\stackrel{<r, " o k ">}{\leftarrow}
$$

The main idea

Example for signatures

- $\mathcal{Q}_{\text {key }}$ may produce $\operatorname{sign}\left(<m\right.$, " v_{1} " $>$, key $)$
- $\mathcal{P}_{\text {key }}$ may produce $\operatorname{sign}\left(<m^{\prime}, " v_{2} ">\right.$, key $)$

The main idea

Example for signatures

- $\mathcal{Q}_{\text {key }}$ may produce $\operatorname{sign}\left(<m,{ }^{\prime} v_{1}\right.$ " $>$, key $)$
- $\mathcal{P}_{\text {key }}$ may produce $\operatorname{sign}\left(<m^{\prime}, " v_{2} ">\right.$, key $)$

To prove \mathcal{P} while abstracting \mathcal{Q}, the attacker must be able to produce $\operatorname{sign}\left(<m^{\prime}\right.$, " v_{1} " $>$, key).

The main idea

Example for signatures

- $\mathcal{Q}_{\text {key }}$ may produce $\operatorname{sign}\left(<m,{ }^{\prime} v_{1}\right.$ " $>$, key $)$
- $\mathcal{P}_{\text {key }}$ may produce $\operatorname{sign}\left(<m^{\prime}, " v_{2} ">\right.$, key $)$

To prove \mathcal{P} while abstracting \mathcal{Q}, the attacker must be able to produce $\operatorname{sign}\left(<m^{\prime}\right.$, " v_{1} " $>$, key).
\hookrightarrow We may give an oracle to the attacker, allowing to obtain $\operatorname{sign}\left(<m^{\prime}, ~ " v_{1}\right.$ " \rangle, key $)$ but not $\operatorname{sign}\left(<m, " v_{2} ">\right.$, key $)$

The main idea

\mathcal{A} is trying to break protocol \mathcal{P}, while simulating \mathcal{Q} thanks to oracle \mathcal{O}.

The main idea

\mathcal{A} is trying to break protocol \mathcal{P}, while simulating \mathcal{Q} thanks to oracle \mathcal{O}.

The main idea

\mathcal{A} is trying to break protocol \mathcal{P}, while simulating \mathcal{Q} thanks to oracle \mathcal{O}.

The main idea

\mathcal{A} is trying to break protocol \mathcal{P}, while simulating \mathcal{Q} thanks to oracle \mathcal{O}.

Simulatability

Simulatability

ν key. $\mathcal{Q}_{\text {key }}$ is \mathcal{O}-simulatable
iff
there exists a PPT $\mathcal{A}^{\mathcal{O}}$ which, for any fixed value of key, produces exactly the same distribution as $\mathcal{Q}_{\text {key }}$

Simulatability

Simulatability

ν key. $\mathcal{Q}_{\text {key }}$ is \mathcal{O}-simulatable
iff
there exists a PPT $\mathcal{A}^{\mathcal{O}}$ which, for any fixed value of key, produces exactly the same distribution as $\mathcal{Q}_{\text {key }}$

A protocol

$$
\begin{aligned}
Q:= & \ldots \\
& \text { out } \left.\left(\operatorname{sign}\left(\left\langle\text { mess, " } \mathrm{v}_{1} \text { " }\right\rangle, \text { key }\right)\right)\right)
\end{aligned}
$$

Simulatability

Simulatability

ν key $\cdot \mathcal{Q}_{\text {key }}$ is \mathcal{O}-simulatable
iff
there exists a PPT $\mathcal{A}^{\mathcal{O}}$ which, for any fixed value of key, produces exactly the same distribution as $\mathcal{Q}_{\text {key }}$

A protocol

$\begin{aligned} Q:= & \ldots \\ & \left.\operatorname{out}\left(\operatorname{sign}\left(\left\langle\text { mess, " } \mathrm{v}_{1} "\right\rangle, \text { key }\right)\right)\right)\end{aligned}$

Signing oracle

$$
\begin{aligned}
& \mathcal{O}_{\text {key }}^{\text {sign }}: \quad \operatorname{input}(m) \\
& \left.\quad \quad \quad \text { output }\left(\operatorname{sign}\left(\left\langle m, "{ }_{1}{ }^{\prime \prime}\right\rangle, \text { key }\right)\right)\right)
\end{aligned}
$$

Generic signing oracles

T signing oracle

$$
\begin{aligned}
\mathcal{O}_{T, s k}^{\text {sign }}: & \text { input }(m) \\
& \text { if } T(m) \text { then } \\
& \quad \text { output }(\operatorname{sign}(m, s k))
\end{aligned}
$$

Generic signing oracles

T signing oracle

$$
\begin{aligned}
\mathcal{O}_{T, s k}^{\text {sign }}: & \text { input }(m) \\
& \text { if } T(m) \text { then } \\
& \quad \text { output }(\operatorname{sign}(m, s k))
\end{aligned}
$$

T-EUF-CMA

$$
\begin{aligned}
& \operatorname{checksign}(t, p k(s k)) \doteq m \Rightarrow \\
& \quad T(m) \\
& \bigvee_{\operatorname{sign}(x, s k) \in \operatorname{st}(t)}(t \doteq \operatorname{sign}(x, s k) \wedge x \doteq m)
\end{aligned}
$$

Conclusions about compositions

- Used as a proof of concept on SSH;
- proofs close to the classical ones;
- mechanizable.
\hookrightarrow It was easy to extend Squirrel to support the generic axioms!

Conclusion

Summary of contributions

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication;

- C. Jacomme and S. Kremer. CSF'18 \& ACM TOPS

Summary of contributions

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication;

- C. Jacomme and S. Kremer. CSF'18 \& ACM TOPS

2. the Squirrel Prover, a mechanized prover in the $B C$ logic.

- D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S\&P 21.

Summary of contributions

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication;

- C. Jacomme and S. Kremer. CSF'18 \& ACM TOPS

2. the Squirrel Prover, a mechanized prover in the BC logic.

- D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S\&P 21.

3. composition results to allow modular proofs of complex protocols in the computational model;

- H. Comon, C. Jacomme, and G. Scerri. CCS'20

Summary of contributions

1. a methodology to analyze protocols in the symbolic model, but making the attacker as strong as possible, with a case study on multi-factor authentication;

- C. Jacomme and S. Kremer. CSF'18 \& ACM TOPS

2. the Squirrel Prover, a mechanized prover in the BC logic.

- D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S\&P 21.

3. composition results to allow modular proofs of complex protocols in the computational model;

- H. Comon, C. Jacomme, and G. Scerri. CCS'20

4. symbolic methods for deciding basic proof steps in computational proofs, formulated as problems on probabilistic programs;

- G. Barthe, X. Fan, J. Gancher, B. Grégoire, C. Jacomme, and E. Shi. CCS'18
- G. Barthe, B. Grégoire, C. Jacomme, S. Kremer, and P-Y. Strub. CSF'19
- G. Barthe, C. Jacomme, and S. Kremer. LICS'20

What's next

Modularity

Apply/extend the composition framework to more complex protocols and properties. (e-voting protocols, forward secrecy for key-exchanges)

What's next

Modularity

Apply/extend the composition framework to more complex protocols and properties. (e-voting protocols, forward secrecy for key-exchanges)

Automation

Improve the automation,

- at the high-level, in the Squirrel Prover; (e.g. with SMT solvers)
- at the low-level, through SolvEq.

What's next

Modularity

Apply/extend the composition framework to more complex protocols and properties. (e-voting protocols, forward secrecy for key-exchanges)

Automation

Improve the automation,

- at the high-level, in the Squirrel Prover; (e.g. with SMT solvers)
- at the low-level, through SolvEq.

Collaboration

There will not be one tool to rule them all. Use each for what it does best and combine formally the guarantees.

What's next - in real life

Privacy

What's next - in real life

Privacy

- It matters.

What's next - in real life

Privacy

- It matters.
- Most people, corporation and states don't care about it.

What's next - in real life

Privacy

- It matters.
- Most people, corporation and states don't care about it.

I would like to try to do something about that...

Some appendixes

Composition on an example

Main intuition

Basic Theorem Example - Parallel Composition

Given two protocols \mathcal{P} and \mathcal{Q}, with $\bar{n}=\mathcal{N}(P) \cap \mathcal{N}(Q)$, if:

- $\nu \bar{n} . \mathcal{Q}$ is \mathcal{O}-simulatable;
- $A \models \mathcal{P} \sim \mathcal{P}^{\prime}$;
- the axioms A are sound for machines with access to \mathcal{O}.

Then $A=\mathcal{P}\left\|\mathcal{Q} \sim \mathcal{P}^{\prime}\right\| \mathcal{Q}$.

A small DDH example

Signed DDH

$$
\begin{array}{lll}
A(a, s k A) & & B(b, s k B) \\
& \stackrel{\operatorname{sign}\left(g^{a}, s k A\right)}{\longrightarrow} & \\
x_{A}=g^{b} & \begin{array}{c}
\operatorname{sign}\left(<g^{a}, g^{b}>, s k B\right)
\end{array} & \\
& \stackrel{\operatorname{sign}\left(<g^{a}, g^{b}>, s k A\right)}{\longrightarrow} & \\
k_{A}=x_{A}^{a} & & k_{B}=x_{B}^{b}
\end{array}
$$

A small DDH example

The security property:

$$
\begin{gathered}
\|^{i \leq N}\left(A\left(a_{i}, s k A\right) ; \text { out }\left(k_{A}\right) \| B\left(b_{i}, s k B\right) ; \text { out }\left(k_{B}\right)\right) \\
\sim \\
\|^{i \leq N-1}\left(A\left(a_{i}, s k A\right) ; \text { out }\left(k_{A}\right) \| B\left(b_{i}, s k B\right) ; \text { out }\left(k_{B}\right)\right) \\
\| A\left(a_{N}, s k A\right) ; \text { if } x_{A}=g^{b_{N}} \text { then out }\left(k_{N, N}\right) \\
\text { else if } x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp \\
\| B\left(b_{N}, s k B\right) ; \text { if } x_{B}=g^{a_{N}} \text { then out }\left(k_{N, N}\right) \\
\text { else if } x_{B} \notin\left\{g^{a_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp
\end{gathered}
$$

A small DDH example

The final security property:
Let's assume the attacker can simulate

$$
\|^{i \leq N-1}\left(A\left(a_{i}, s k A\right) ; \text { out }\left(k_{A}\right) \| B\left(b_{i}, \text { skB }\right) ; \text { out }\left(k_{B}\right)\right)
$$

A small DDH example

The final security property:
Let's assume the attacker can simulate

$$
\|^{i \leq N-1}\left(A\left(a_{i}, s k A\right) ; \operatorname{out}\left(k_{A}\right) \| B\left(b_{i}, \operatorname{skB}\right) ; \operatorname{out}\left(k_{B}\right)\right)
$$

. We can simply prove:

$$
\begin{gathered}
A\left(a_{N}, s k A\right) ; \text { out }\left(k_{A}\right) \| B\left(b_{N}, s k B\right) ; \text { out }\left(k_{B}\right) \\
\sim \\
A\left(a_{N}, s k A\right) ; \text { if } x_{A}=g^{b_{N}} \text { then out }\left(k_{N, N}\right) \\
\text { else if } x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp \\
\| B\left(b_{N}, s k B\right) ; \text { if } x_{B}=g^{a_{N}} \text { then out }\left(k_{N, N}\right) \\
\text { else if } x_{B} \notin\left\{g^{a_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp
\end{gathered}
$$

A small DDH example

The final security property:
Let's assume the attacker can simulate

$$
\|^{i \leq N-1}\left(A\left(a_{i}, s k A\right) ; \operatorname{out}\left(k_{A}\right) \| B\left(b_{i}, \operatorname{skB}\right) ; \operatorname{out}\left(k_{B}\right)\right)
$$

. We can simply prove:

$$
\begin{gathered}
A\left(a_{N}, s k A\right) ; \text { out }\left(k_{A}\right) \| B\left(b_{N}, s k B\right) ; \text { out }\left(k_{B}\right) \\
\sim \\
A\left(a_{N}, s k A\right) ; \text { if } x_{A}=g^{b_{N}} \text { then out }\left(k_{N, N}\right) \\
\text { else if } x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp \\
\| B\left(b_{N}, s k B\right) \text {; if } x_{B}=g^{a_{N}} \text { then out }\left(k_{N, N}\right) \\
\text { else if } x_{B} \notin\left\{g^{a_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp
\end{gathered}
$$

Simulating the sessions

What must the attacker be able to produce?
He must be able to start some A :

$$
\forall 1 \leq i \leq N-1 . \operatorname{sign}\left(g^{a_{i}}, \operatorname{sk} A\right)
$$

Simulating the sessions

What must the attacker be able to produce ?

He must be able to start some A :

$$
\forall 1 \leq i \leq N-1 . \operatorname{sign}\left(g^{a_{i}}, \operatorname{sk} A\right)
$$

And for any DDH share r he receives, he should be able to produce:

- $\forall 1 \leq i \leq N-1 . \operatorname{sign}\left(<g^{a_{i}}, r>, s k A\right)$

Simulating the sessions

What must the attacker be able to produce ?

He must be able to start some A :

$$
\forall 1 \leq i \leq N-1 . \operatorname{sign}\left(g^{a_{i}}, \operatorname{sk} A\right)
$$

And for any DDH share r he receives, he should be able to produce:

- $\forall 1 \leq i \leq N-1 . \operatorname{sign}\left(<g^{a_{i}}, r>, s k A\right)$
- $\forall 1 \leq i \leq N-1 . \operatorname{sign}\left(<r, g^{b_{i}}>, s k B\right)$

Generic signing oracles

T signing oracle

$$
\begin{aligned}
\mathcal{O}_{T, s k}^{\text {sign }}: & \text { input }(m) \\
& \text { if } T(m) \text { then } \\
& \text { output }(\operatorname{sign}(m, s k)))
\end{aligned}
$$

Generic signing oracles

T signing oracle

$$
\begin{aligned}
\mathcal{O}_{T, s k}^{\text {sign }}: & \text { input }(m) \\
& \text { if } T(m) \text { then } \\
& \quad \text { output }(\operatorname{sign}(m, s k)))
\end{aligned}
$$

Give the attacher access to $\mathcal{O}_{T, s k A}^{\text {sign }}$ and $\mathcal{O}_{T, s k B}^{\text {sign }}$ with:

$$
T(m)=\text { true } \Leftrightarrow \exists 1 \leq i \leq N-1, r .\left\{\begin{array}{l}
m=g^{a_{i}} \\
m=<g^{a_{i}}, r> \\
m=<r, g^{b_{i}}>
\end{array}\right.
$$

Generic signing oracles

T signing oracle

$$
\begin{aligned}
\mathcal{O}_{T, s k}^{\text {sign }}: & \text { input }(m) \\
& \text { if } T(m) \text { then } \\
& \quad \text { output }(\operatorname{sign}(m, s k)))
\end{aligned}
$$

Give the attacher access to $\mathcal{O}_{T, s k A}^{\text {sign }}$ and $\mathcal{O}_{T, s k B}^{\text {sign }}$ with:

$$
T(m)=\text { true } \Leftrightarrow \exists 1 \leq i \leq N-1, r .\left\{\begin{array}{l}
m=g^{a_{i}} \\
m=<g^{a_{i}}, r> \\
m=<r, g^{b_{i}}>
\end{array}\right.
$$

\hookrightarrow How to make the proof for such attackers ?

Generic axioms

T-EUF-CMA

For any computable function T, for all terms t such that sk only appears in key position:

$$
\begin{aligned}
& \text { checksign }(t, p k(s k))) \Rightarrow \\
& \quad T(\operatorname{getmess}(t)) \\
& \left.\quad \bigvee_{\operatorname{sign}(x, s k) \in \operatorname{st}(t)}(t \doteq \operatorname{sign}(x, s k))\right) \\
& \sim \\
& \operatorname{true}
\end{aligned}
$$

The final proof

Assumption

$$
\begin{aligned}
& \text { checksign }(t, p k(s k))) \Rightarrow \\
& \quad \exists 1 \leq i \leq N-1, r . \operatorname{getmess}(t) \in\left\{g^{a_{i}},<g^{a_{i}}, r>,<r, g^{b_{i}}>\right\} \\
& \left.\quad \bigvee_{\operatorname{sign}(x, s k) \in \operatorname{st}(t)}(t \doteq \operatorname{sign}(x, s k))\right) \\
& \sim \operatorname{true}
\end{aligned}
$$

The final proof

Assumption

$$
\begin{aligned}
& \operatorname{checksign}(t, p k(s k))) \Rightarrow \\
& \qquad \exists 1 \leq i \leq N-1, r . \operatorname{getmess}(t) \in\left\{g^{a_{i}},<g^{a_{i}}, r>,<r, g^{b_{i}}>\right\} \\
& \left.\quad \bigvee_{\operatorname{sign}(x, s k) \in \operatorname{st}(t)}(t \doteq \operatorname{sign}(x, s k))\right) \\
& \sim \operatorname{true}
\end{aligned}
$$

$\wedge D D H: g^{a_{N}}, g^{b_{N}}, g^{a_{N} b_{N}} \sim g^{a_{N}}, g^{b_{N}}, k_{N, N}$

The final proof

Goal

$$
\begin{gathered}
A\left(a_{N}, s k A\right) ; \text { out }\left(k_{A}\right) \| B\left(b_{N}, s k B\right) ; \text { out }\left(k_{B}\right) \\
\sim \\
A\left(a_{N}, s k A\right) ; \text { if } x_{A}=g^{b_{N}} \text { then out }\left(k_{N, N}\right) \\
\text { else if } x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp \\
\| B\left(b_{N}, s k B\right) \text {; if } x_{B}=g^{a_{N}} \text { then out }\left(k_{N, N}\right) \\
\text { else if } x_{B} \notin\left\{g^{a_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp
\end{gathered}
$$

The final proof

Synchronization

$$
\begin{aligned}
& A\left(a_{N}, s k A\right) \text {; if } x_{A}=g^{b_{N}} \text { then out }\left(g^{a_{N} b_{N}}\right) \\
& \text { else if } x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N} \text { then out }\left(x_{A}^{a_{N}}\right) \\
& \| B\left(b_{N}, s k B\right) \text {; if } x_{B}=g^{a_{N}} \text { then out }\left(g^{a_{N} b_{N}}\right) \\
& \text { else if } x_{B} \notin\left\{g^{a_{i}}\right\}_{1 \leq i \leq N} \text { then out }\left(x_{B}^{b_{N}}\right) \\
& \sim \\
& A\left(a_{N}, s k A\right) \text {; if } x_{A}=g^{b_{N}} \text { then out }\left(k_{N, N}\right) \\
& \text { else if } x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp \\
& \| B\left(b_{N}, s k B\right) ; \text { if } x_{B}=g^{a_{N}} \text { then out }\left(k_{N, N}\right) \\
& \text { else if } x_{B} \notin\left\{g^{a_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp
\end{aligned}
$$

The final proof

Synchronization

$$
\begin{gathered}
A\left(a_{N}, s k A\right) \text {; if } x_{A}=g^{b_{N}} \text { then out }\left(g^{a_{N} b_{N}}\right) \\
\text { else if } x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N} \text { then out }\left(x_{A}^{a_{N}}\right) \\
\| B\left(b_{N}, s k B\right) \text {; if } x_{B}=g^{a_{N}} \text { then out }\left(g^{a_{N} b_{N}}\right) \\
\text { else if } x_{B} \notin\left\{g^{a_{i}}\right\}_{1 \leq i \leq N} \text { then out }\left(x_{B}^{b_{N}}\right) \\
\sim \\
A\left(a_{N}, s k A\right) \text {; if } x_{A}=g^{b_{N}} \text { then out }\left(k_{N, N}\right) \\
\text { else if } x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp \\
\| B\left(b_{N}, s k B\right) \text {; if } x_{B}=g^{a_{N}} \text { then out }\left(k_{N, N}\right)
\end{gathered}
$$

The final proof

Synchronization

$$
\begin{gathered}
A\left(a_{N}, s k A\right) \text {; if } x_{A}=g^{b_{N}} \text { then out }\left(g^{a_{N} b_{N}}\right) \\
\text { else if } x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N} \text { then out }\left(x_{A}^{a_{N}}\right) \\
\| B\left(b_{N}, s k B\right) \text {; if } x_{B}=g^{a_{N}} \text { then out }\left(g^{a_{N} b_{N}}\right) \\
\text { else if } x_{B} \notin\left\{g^{a_{i}}\right\}_{1 \leq i \leq N} \text { then out }\left(x_{B}^{b_{N}}\right) \\
\sim \\
A\left(a_{N}, s k A\right) \text {; if } x_{A}=g^{b_{N}} \text { then out }\left(k_{N, N}\right) \\
\text { else if } x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N} \text { then } \perp \\
\| B\left(b_{N}, s k B\right) ; \text { if } x_{B}=g^{a_{N}} \text { then out }\left(k_{N, N}\right)
\end{gathered}
$$

The final proof

Synchronization

Proof steps Split the conditonals into four cases and,

The final proof

Synchronization

Proof steps Split the conditonals into four cases and,

1. use DDH to show indistinguishability,

The final proof

Synchronization

Proof steps Split the conditonals into four cases and,

1. use DDH to show indistinguishability,
2. use T-EUF-CMA, to show that $x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N}$ is never true (e.g, \perp unreachable),

The final proof

Synchronization

Proof steps Split the conditonals into four cases and,

1. use DDH to show indistinguishability,
2. use T-EUF-CMA, to show that $x_{A} \notin\left\{g^{b_{i}}\right\}_{1 \leq i \leq N}$ is never true (e.g, \perp unreachable),
3. similar to (2);
4. similar to (2);

Formal composition theorems

A core theorem

Composition without replication

Let $C\left[{ }_{-1}, \ldots,,_{n}\right]$ be a context such that the variable k_{i} is bound in each hole $i i$ and $P_{1}(x), \ldots, P_{n}(x)$ be parametrized protocols, such that all channels are disjoint. Given an oracle \mathcal{O}, with $\bar{n} \supset \mathcal{N}(C) \cap \mathcal{N}\left(P_{1}, \ldots, P_{n}\right)$, if, with $k_{1}^{\prime}, \ldots, k_{n}^{\prime}$ fresh names,

1. $C\left[\operatorname{out}\left(1, k_{1}\right), \ldots, \operatorname{out}\left(n, k_{n}\right)\right] \cong_{\mathcal{O}} C\left[\operatorname{out}\left(1, k_{1}^{\prime}\right), \ldots, \operatorname{out}\left(n, k_{n}^{\prime}\right)\right]$
2. $\nu \bar{n} \cdot \operatorname{in}(x) . P_{1}(x)\|\ldots\| \operatorname{in}(x) \cdot P_{n}(x)$ is \mathcal{O}-simulatable

Then $C\left[P_{1}\left(k_{1}\right), \ldots, P_{n}\left(k_{n}\right)\right] \cong_{\mathcal{O}} C\left[P_{1}\left(k_{1}^{\prime}\right), \ldots, P_{n}\left(k_{n}^{\prime}\right)\right]$

A core theorem

Unbounded parallel Composition

Let \mathcal{O}_{r} be an oracle and $A x$ a set of axioms both parametrized by a sequence of names \bar{s}. Let \bar{p} be a sequence of shared secrets, $P(\bar{x}), R(\bar{x}, \bar{y}, \bar{z})$ and $Q(\bar{x}, \bar{y})$ be parametrized protocols. If we have, for a sequence of names $\overline{\text { Isid }}$ and any integers n, if with $\bar{s}=\overline{\operatorname{sid}}_{1}, \ldots, \overline{\text { ssid }}_{n} n$ copies of $\overline{\text { Isid }}$:

1. $\forall 1 \leq i \leq n, \nu \bar{p} \cdot t_{R\left(\bar{p}, \overline{s i d_{i}}, \bar{s}\right)}$ is \mathcal{O}_{r} simulatable.
2. $A x$ is \mathcal{O}_{r} sound.
3. $A x \mid=t_{P(\bar{p})} \sim t_{Q(\bar{p}, \bar{s})}$

Then, for any integer n :

$$
\begin{aligned}
& P(\bar{p}) \|!_{n} R(\bar{p}, \overline{\text { Isid }}, \bar{s}) \\
& \quad \cong Q(\bar{p}, \bar{s}) \|!_{n} R(\bar{p}, \overline{\text { Isid }}, \bar{s})
\end{aligned}
$$

A core theorem

Unbounded parallel Composition

Let \mathcal{O}_{r} be an oracle and $A x$ a set of axioms both parametrized by a sequence of names \bar{s}. Let \bar{p} be a sequence of shared secrets, $P(\bar{x}, \bar{y})$ and $Q(\bar{x}, \bar{y}, \bar{z})$ be parametrized protocols. If we have, for sequences of names $\overline{\operatorname{sid}}_{p}, \overline{\operatorname{sid}}_{q}$ and any integers n, if with
$\bar{s}=\overline{\operatorname{sid}}_{p, 1}, \ldots, \overline{\text { sid }}_{p, n}, \ldots, \overline{\text { ssid }}_{q, n}$ sequences of copies of ${\overline{\text { sid }_{p}}}_{p},{\overline{\text { sid }_{q}}}_{q}$

1. $\forall 1 \leq i \leq n, \nu \bar{p} \cdot t_{P\left(\bar{p}, \overline{s i d}_{p, i}\right)}$ is \mathcal{O}_{r} simulatable.
2. $\forall 1 \leq i \leq n, \nu \bar{p} . t_{Q\left(\bar{p}, \overline{\text { sid }}_{q, i}, \bar{s}\right)}$ is \mathcal{O}_{r} simulatable.
3. $A x$ is \mathcal{O}_{r} sound.
4. $A x \vDash t_{P\left(\overline{\bar{p}}, \overline{\text { ssid }}_{p}\right)} \sim t_{Q\left(\bar{p}, \overline{\text { sid }}_{q}, \bar{s}\right)}$

Then, for any integers n :

$$
!_{n} P\left(\bar{p}, \overline{\operatorname{sid}}_{p}\right) \cong_{\mathcal{O}}!_{n} Q\left(\bar{p}, \bar{s}, \overline{\operatorname{sid}}_{q}\right)
$$

[^0]: ${ }^{1}$ C. Jacomme and S. Kremer, CSF'18 \& ACM TOPS

[^1]: ${ }^{1}$ C. Jacomme and S. Kremer, CSF'18 \& ACM TOPS

[^2]: ${ }^{2}$ D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S\&P'21

[^3]: ${ }^{3}$ H. Comon, C. Jacomme and G. Scerri. CCS'20

[^4]: ${ }^{3}$ H. Comon, C. Jacomme and G. Scerri. CCS'20

[^5]: ${ }^{3}$ H. Comon, C. Jacomme and G. Scerri. CCS'20

