
Proofs of Security Protocols

Symbolic Methods and Powerful Attackers

Charlie Jacomme,
supervised by Hubert Comon and Steve Kremer

June 30th, 2021

Introduction

Introduction?

Do I really need to introduce security and privacy?

1

Introduction

One of the biggest lesson of my thesis

.

Privacy matters

2

Introduction

One of the biggest lesson of my thesis
.

Privacy matters

2

Privacy

Many people NEED privacy to live:

• Homosexuality is a crime in 69 countries.

• Citizens in authoritarian countries (journalist, political opponents).

• Discrimination (origins, health, religion,. . .) for loans, health insurances,
employment. . .

• Uighurs currently tracked in China.

But what if I have nothing to hide?

3

Privacy

Many people NEED privacy to live:

• Homosexuality is a crime in 69 countries.

• Citizens in authoritarian countries (journalist, political opponents).

• Discrimination (origins, health, religion,. . .) for loans, health insurances,
employment. . .

• Uighurs currently tracked in China.

But what if I have nothing to hide?

3

Nothing to hide. . .

1. If we don’t have privacy, people that need it can’t have it.

2. Most people actually have something to hide.
• Should my boss know what I do on my free time? Or what is the global income of

my household?
• Should my government know my political opinions?
• Should my mail provider know my illness?

3. The simple fact of being watched changes unconsciously our behaviour.
• Philosophical and sociological theories (Foucault, Deleuze, Guattari,. . .), and

fictional examples (Orwell, Damosio,. . .)

4

Nothing to hide. . .

1. If we don’t have privacy, people that need it can’t have it.

2. Most people actually have something to hide.
• Should my boss know what I do on my free time? Or what is the global income of

my household?
• Should my government know my political opinions?
• Should my mail provider know my illness?

3. The simple fact of being watched changes unconsciously our behaviour.
• Philosophical and sociological theories (Foucault, Deleuze, Guattari,. . .), and

fictional examples (Orwell, Damosio,. . .)

4

Nothing to hide. . .

1. If we don’t have privacy, people that need it can’t have it.

2. Most people actually have something to hide.
• Should my boss know what I do on my free time? Or what is the global income of

my household?
• Should my government know my political opinions?
• Should my mail provider know my illness?

3. The simple fact of being watched changes unconsciously our behaviour.
• Philosophical and sociological theories (Foucault, Deleuze, Guattari,. . .), and

fictional examples (Orwell, Damosio,. . .)

4

Guarantees

Security and Privacy Matter !

5

Guarantees

Security and Privacy Matter !
For each possible use case, we should know exactly who can access what, whether it is

a stranger, a government or a corporation.

5

Guarantees

Security and Privacy Matter !

Which guarantees, for which attacker?

5

Guarantees

Security and Privacy Matter !

Which formal guarantees, for which attacker?

5

The difficulty

Hardware

�

Æ

§

OS

q

±

Implementation

q

Primitives

Protocols

T

Users

�

If any link of the chain is broken, everything is.

6

The difficulty

Hardware

�

Æ

§

OS

q

±

Implementation

q

Primitives

Protocols

T

Users

�

If any link of the chain is broken, everything is.

6

The difficulty

Hardware

�

Æ

§

OS

q

±

Implementation

q

Primitives

Protocols

T

Users

�

If any link of the chain is broken, everything is.

6

The difficulty

Hardware

�

Æ

§

OS

q

±

Implementation

q

Primitives

Protocols

T

Users

�

If any link of the chain is broken, everything is.

6

The difficulty

Hardware

�

Æ

§

OS

q

±

Implementation

q

Primitives

Protocols

T

Users

�

If any link of the chain is broken, everything is.

6

The difficulty

Hardware

�

Æ

§

OS

q

±

Implementation

q

Primitives

Protocols

T

Users

�

If any link of the chain is broken, everything is.

6

The difficulty

Hardware

�

Æ

§

OS

q

±

Implementation

q

Primitives

Protocols

T

Users

�

If any link of the chain is broken, everything is.

6

The difficulty

Hardware

�

Æ

§

OS

q

±

Implementation

q

Primitives

Protocols

T

Users

�

If any link of the chain is broken, everything is.

6

Second difficulty - How to model the attacker ?

Symbolic Model VS Computational Model

adversary = fixed set of possible actions adversary = any program

Automated proofs - strong assumptions Hard automation - strong guarantees

7

Second difficulty - How to model the attacker ?

Symbolic Model VS Computational Model

adversary = fixed set of possible actions adversary = any program

Automated proofs - strong assumptions Hard automation - strong guarantees

7

Second difficulty - How to model the attacker ?

Symbolic Model VS Computational Model

adversary = fixed set of possible actions adversary = any program

Automated proofs - strong assumptions Hard automation - strong guarantees

7

Second difficulty - How to model the attacker ?

Symbolic Model VS Computational Model

adversary = fixed set of possible actions adversary = any program

Automated proofs - strong assumptions Hard automation - strong guarantees

7

Second difficulty - How to model the attacker ?

Symbolic Model VS Computational Model

adversary = fixed set of possible actions adversary = any program

Automated proofs - strong assumptions

Hard automation - strong guarantees

7

Second difficulty - How to model the attacker ?

Symbolic Model VS Computational Model

adversary = fixed set of possible actions adversary = any program

Automated proofs - strong assumptions Hard automation - strong guarantees
7

My lines of work

The core of my PhD
Make it easier to prove protocols against attackers as powerful as possible.

• Make the symbolic model more precise (detailed threat models);

• enable proofs of compound protocols in the computational model:
• compositional proofs,
• mechanization,
• proof automation.

8

My lines of work

The core of my PhD
Make it easier to prove protocols against attackers as powerful as possible.

• Make the symbolic model more precise (detailed threat models);

• enable proofs of compound protocols in the computational model:
• compositional proofs,
• mechanization,
• proof automation.

8

My lines of work

The core of my PhD
Make it easier to prove protocols against attackers as powerful as possible.

• Make the symbolic model more precise (detailed threat models);

• enable proofs of compound protocols in the computational model:
• compositional proofs,
• mechanization,
• proof automation.

8

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;

Part I - just a taste of the methodology
2. a prototype of a mechanized prover in the BC logic;

Part II - big ideas of the BC logic & Squirrel
3. composition results to allow modular proofs of complex protocols in the

computational model;
Part III - presentation of the framework

4. symbolic methods for deciding basic proof steps in computational proofs,
formulated as problems on probabilistic programs.
Not presented. (decidability of universal equivalence between programs over finite
fields; library integrated into EasyCrypt and MaskVerif)

9

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;

Part I - just a taste of the methodology

2. a prototype of a mechanized prover in the BC logic;

Part II - big ideas of the BC logic & Squirrel
3. composition results to allow modular proofs of complex protocols in the

computational model;
Part III - presentation of the framework

4. symbolic methods for deciding basic proof steps in computational proofs,
formulated as problems on probabilistic programs.
Not presented. (decidability of universal equivalence between programs over finite
fields; library integrated into EasyCrypt and MaskVerif)

9

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;

Part I - just a taste of the methodology

2. a prototype of a mechanized prover in the BC logic;

Part II - big ideas of the BC logic & Squirrel

3. composition results to allow modular proofs of complex protocols in the
computational model;

Part III - presentation of the framework
4. symbolic methods for deciding basic proof steps in computational proofs,

formulated as problems on probabilistic programs.
Not presented. (decidability of universal equivalence between programs over finite
fields; library integrated into EasyCrypt and MaskVerif)

9

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;

Part I - just a taste of the methodology

2. a prototype of a mechanized prover in the BC logic;

Part II - big ideas of the BC logic & Squirrel

3. composition results to allow modular proofs of complex protocols in the
computational model;

Part III - presentation of the framework

4. symbolic methods for deciding basic proof steps in computational proofs,
formulated as problems on probabilistic programs.

Not presented. (decidability of universal equivalence between programs over finite
fields; library integrated into EasyCrypt and MaskVerif)

9

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;
Part I - just a taste of the methodology

2. a prototype of a mechanized prover in the BC logic;

Part II - big ideas of the BC logic & Squirrel

3. composition results to allow modular proofs of complex protocols in the
computational model;

Part III - presentation of the framework

4. symbolic methods for deciding basic proof steps in computational proofs,
formulated as problems on probabilistic programs.

Not presented. (decidability of universal equivalence between programs over finite
fields; library integrated into EasyCrypt and MaskVerif)

9

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;
Part I - just a taste of the methodology

2. a prototype of a mechanized prover in the BC logic;
Part II - big ideas of the BC logic & Squirrel

3. composition results to allow modular proofs of complex protocols in the
computational model;

Part III - presentation of the framework

4. symbolic methods for deciding basic proof steps in computational proofs,
formulated as problems on probabilistic programs.

Not presented. (decidability of universal equivalence between programs over finite
fields; library integrated into EasyCrypt and MaskVerif)

9

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;
Part I - just a taste of the methodology

2. a prototype of a mechanized prover in the BC logic;
Part II - big ideas of the BC logic & Squirrel

3. composition results to allow modular proofs of complex protocols in the
computational model;
Part III - presentation of the framework

4. symbolic methods for deciding basic proof steps in computational proofs,
formulated as problems on probabilistic programs.

Not presented. (decidability of universal equivalence between programs over finite
fields; library integrated into EasyCrypt and MaskVerif)

9

Summary of contributions - outline

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;
Part I - just a taste of the methodology

2. a prototype of a mechanized prover in the BC logic;
Part II - big ideas of the BC logic & Squirrel

3. composition results to allow modular proofs of complex protocols in the
computational model;
Part III - presentation of the framework

4. symbolic methods for deciding basic proof steps in computational proofs,
formulated as problems on probabilistic programs.
Not presented. (decidability of universal equivalence between programs over finite
fields; library integrated into EasyCrypt and MaskVerif)

9

Make the symbolic model more
precise
Second factor authentication

A case study : Second Factor authentication

How to improve passwords (which are weak)
Use a second factor to confirm login, either a smartphone or a dedicated token.

Considered protocols:

• Google 2 Step (Verification code, Single Tap, Double Tap)

• FIDO’s U2F (Google, Facebook, Github, Dropbox,...)

10

A case study : Second Factor authentication

How to improve passwords (which are weak)
Use a second factor to confirm login, either a smartphone or a dedicated token.

Considered protocols:

• Google 2 Step (Verification code, Single Tap, Double Tap)

• FIDO’s U2F (Google, Facebook, Github, Dropbox,...)

10

Main ideas

A case study1 of Google 2 Step and FIDO’s U2F.

• Many different detailed threat models;
• malware on the phone,
• keylogger on the computer,
• weak SMS channel,
• . . .

• model the full authentication system;
• completely automated analysis of all scenarios;
• simple, small modifications (adding info to display) that enhance security.

→ 6 172 (non-redundant) scenarios analysed by PROVERIF
in 8 minutes

1C. Jacomme and S. Kremer, CSF’18 & ACM TOPS

11

Main ideas

A case study1 of Google 2 Step and FIDO’s U2F.

• Many different detailed threat models;
• malware on the phone,
• keylogger on the computer,
• weak SMS channel,
• . . .

• model the full authentication system;
• completely automated analysis of all scenarios;
• simple, small modifications (adding info to display) that enhance security.

→ 6 172 (non-redundant) scenarios analysed by PROVERIF
in 8 minutes

1C. Jacomme and S. Kremer, CSF’18 & ACM TOPS

11

Main ideas

A case study1 of Google 2 Step and FIDO’s U2F.

• Many different detailed threat models;
• malware on the phone,
• keylogger on the computer,
• weak SMS channel,
• . . .

• model the full authentication system;
• completely automated analysis of all scenarios;
• simple, small modifications (adding info to display) that enhance security.

→ 6 172 (non-redundant) scenarios analysed by PROVERIF
in 8 minutes

1C. Jacomme and S. Kremer, CSF’18 & ACM TOPS

11

Results

Pros of U2F

• A possibility of privacy.

• Strong protection against phishing.

Cons of U2F

• No feedback to the user, cannot verify what is validated.

• Not independent from the computer, risk of malwares.

12

An introduction to the BC logic

Protocol and properties

A protocol

A
〈r , sign(r ,key)〉−−−−−−−−−→ B

| Checks the signature
<“ok”,r>←−−−−−−

Security property

• Authentication - whenever B accepts, the message that B received was sent by A.

13

Protocol and properties

A protocol

A
〈r , sign(r ,key)〉−−−−−−−−−→ B

| Checks the signature

<“ok”,r>←−−−−−−

Security property

• Authentication - whenever B accepts, the message that B received was sent by A.

13

Protocol and properties

A protocol

A
〈r , sign(r ,key)〉−−−−−−−−−→ B

| Checks the signature
<“ok”,r>←−−−−−−

Security property

• Authentication - whenever B accepts, the message that B received was sent by A.

13

Protocol and properties

A protocol

A
〈r , sign(r ,key)〉−−−−−−−−−→ B

| Checks the signature
<“ok”,r>←−−−−−−

Security property

• Authentication - whenever B accepts, the message that B received was sent by A.

13

A quick introduction to the BC logic

A protocol

A
〈r , sign(r ,key)〉−−−−−−−−−→ B

| Checks the signature
<“ok”,r>←−−−−−−

In BC
Protocols are modelled with sequences of terms:

φ0 := 〈r , sign(r , key)〉

φ1 := φ0,
if (checksign(snd(g0(φ0)), pk(key))) = fst(g0(φ0)) then
< “ok”, fst(g0(φ0)) >

14

A quick introduction to the BC logic

A protocol

A
〈r , sign(r ,key)〉−−−−−−−−−→ B

| Checks the signature
<“ok”,r>←−−−−−−

In BC
Protocols are modelled with sequences of terms:

φ0 := 〈r , sign(r , key)〉

φ1 := φ0,
if (checksign(snd(g0(φ0)), pk(key))) = fst(g0(φ0)) then
< “ok”, fst(g0(φ0)) >

14

A quick introduction to the BC logic

A protocol

A
〈r , sign(r ,key)〉−−−−−−−−−→ B

| Checks the signature
<“ok”,r>←−−−−−−

In BC
Protocols are modelled with sequences of terms:

φ0 := 〈r , sign(r , key)〉

φ1 := φ0,
if (checksign(snd(g0(φ0)), pk(key))) = fst(g0(φ0)) then
< “ok”, fst(g0(φ0)) >

14

A quick introduction to the BC logic

A protocol

A
〈r , sign(r ,key)〉−−−−−−−−−→ B

| Checks the signature
<“ok”,r>←−−−−−−

In BC
Protocols are modelled with sequences of terms:

φ0 := 〈r , sign(r , key)〉

φ1 := φ0,
if (checksign(snd(g0(φ0)), pk(key))) = fst(g0(φ0)) then
< “ok”, fst(g0(φ0)) >

14

A quick introduction to the BC logic

A protocol

A
〈r , sign(r ,key)〉−−−−−−−−−→ B

| Checks the signature
<“ok”,r>←−−−−−−

In BC
Protocols are modelled with sequences of terms:

φ0 := 〈r , sign(r , key)〉

φ1 := φ0,
if (checksign(snd(g0(φ0)), pk(key))) = fst(g0(φ0)) then
< “ok”, fst(g0(φ0)) >

Attacker inputs represented with non
instantiated function symbol

14

A quick introduction to the BC logic

How to reason on terms?
A first order logic built over a predicate that captures indistinguishability:

t1 ∼ t2

Indistinguishability

• A generic way to express all security properties.

• Any attacker can only distinguish between t1 and t2 with negligible probability.

15

A quick introduction to the BC logic

How to reason on terms?
A first order logic built over a predicate that captures indistinguishability:

t1 ∼ t2

Indistinguishability

• A generic way to express all security properties.

• Any attacker can only distinguish between t1 and t2 with negligible probability.

15

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.

EUF-CMA
checksign(t, pk(key))) = m⇒∨

sign(x ,key)∈ St(t)(t = sign(x , key) ∧ x = m)

16

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.

EUF-CMA
checksign(t, pk(key))) = m⇒∨

sign(x ,key)∈ St(t)(t = sign(x , key) ∧ x = m)

16

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.

EUF-CMA
checksign(t, pk(key))) = m⇒∨

sign(x ,key)∈ St(t)(t = sign(x , key) ∧ x = m)

16

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.

EUF-CMA
checksign(t, pk(key))) = m⇒∨

sign(x ,key)∈ St(t)(t = sign(x , key) ∧ x = m)

16

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.

EUF-CMA
checksign(t, pk(key))) = m⇒∨

sign(x ,key)∈ St(t)(t = sign(x , key) ∧ x = m)

16

A quick introduction to the BC logic

Axioms to model the assumptions about the cryptographic library.

EUF-CMA
checksign(t, pk(key))) = m⇒∨

sign(x ,key)∈ St(t)(t = sign(x , key) ∧ x = m)

16

A mechanized prover for the BC
logic

Issues of the BC logic

Downsides of the BC logic

• To perform proofs, we have to look at all executions of the protocol, i.e., all
possible sequences of terms.

• Proofs are tedious to perform by hand.

• Proofs only for a bounded number of sessions.

17

Issues of the BC logic

Downsides of the BC logic

• To perform proofs, we have to look at all executions of the protocol, i.e., all
possible sequences of terms.

• Proofs are tedious to perform by hand.

• Proofs only for a bounded number of sessions.

17

Issues of the BC logic

Downsides of the BC logic

• To perform proofs, we have to look at all executions of the protocol, i.e., all
possible sequences of terms.

• Proofs are tedious to perform by hand.

• Proofs only for a bounded number of sessions.

17

Issues of the BC logic

Downsides of the BC logic

• To perform proofs, we have to look at all executions of the protocol, i.e., all
possible sequences of terms.

• Proofs are tedious to perform by hand.

• Proofs only for a bounded number of sessions.

17

The Squirrel Prover

Our contributions2

• A meta-logic over BC, that allows to talk abstractly about executions of the
protocol.

• An interactive prover for this meta-logic.

The Squirrel Prover

2D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S&P’21

18

The Squirrel Prover

Our contributions2

• A meta-logic over BC, that allows to talk abstractly about executions of the
protocol.

• An interactive prover for this meta-logic.

The Squirrel Prover

2D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S&P’21

18

The Squirrel Prover

Our contributions2

• A meta-logic over BC, that allows to talk abstractly about executions of the
protocol.

• An interactive prover for this meta-logic.

The Squirrel Prover

2D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S&P’21

18

19

19

19

19

19

19

19

More details?

https://squirrel-prover.github.io/

20

https://squirrel-prover.github.io/

A compositional framework inside
the computational model

Composition?

The goal
To be able to make the proof of a composed protocol as a composition of proofs:

• smaller,

• reusable,

• and modular proofs.

Top-down vs bottom-up

• Prove components universally secure (UC), and combine them together.

• Split a protocol into multiple components, and prove them secure in the context.

Limitations of the state of the art
Shared secrets and state passing and usability.

21

Composition?

The goal
To be able to make the proof of a composed protocol as a composition of proofs:

• smaller,

• reusable,

• and modular proofs.

Top-down vs bottom-up

• Prove components universally secure (UC), and combine them together.

• Split a protocol into multiple components, and prove them secure in the context.

Limitations of the state of the art
Shared secrets and state passing and usability.

21

Composition?

The goal
To be able to make the proof of a composed protocol as a composition of proofs:

• smaller,

• reusable,

• and modular proofs.

Top-down vs bottom-up

• Prove components universally secure (UC), and combine them together.

• Split a protocol into multiple components, and prove them secure in the context.

Limitations of the state of the art
Shared secrets and state passing and usability.

21

Composition?

The goal
To be able to make the proof of a composed protocol as a composition of proofs:

• smaller,

• reusable,

• and modular proofs.

Top-down vs bottom-up

• Prove components universally secure (UC), and combine them together.

• Split a protocol into multiple components, and prove them secure in the context.

Limitations of the state of the art
Shared secrets and state passing and usability.

21

Our contributions

The composition framework3

• Handles parallel and sequential composition;
unlike Blanchet, CSF’18, or Brzuska et al., CCS’11

• allows to consider protocols with state passing and long term shared secrets;
unlike Brzuska et al., ASIACRYPT’18

• allows to reduce the security of multiple sessions to the security of a single one;

• naturally translates to the BC logic, and allows for the first time to perform proofs
for an unbounded number of sessions with this logic.

3H. Comon, C. Jacomme and G. Scerri. CCS’20

22

Our contributions

The composition framework3

• Handles parallel and sequential composition;
unlike Blanchet, CSF’18, or Brzuska et al., CCS’11

• allows to consider protocols with state passing and long term shared secrets;
unlike Brzuska et al., ASIACRYPT’18

• allows to reduce the security of multiple sessions to the security of a single one;

• naturally translates to the BC logic, and allows for the first time to perform proofs
for an unbounded number of sessions with this logic.

3H. Comon, C. Jacomme and G. Scerri. CCS’20

22

Our contributions

The composition framework3

• Handles parallel and sequential composition;
unlike Blanchet, CSF’18, or Brzuska et al., CCS’11

• allows to consider protocols with state passing and long term shared secrets;
unlike Brzuska et al., ASIACRYPT’18

• allows to reduce the security of multiple sessions to the security of a single one;

• naturally translates to the BC logic, and allows for the first time to perform proofs
for an unbounded number of sessions with this logic.

3H. Comon, C. Jacomme and G. Scerri. CCS’20

22

Our contributions

The composition framework3

• Handles parallel and sequential composition;
unlike Blanchet, CSF’18, or Brzuska et al., CCS’11

• allows to consider protocols with state passing and long term shared secrets;
unlike Brzuska et al., ASIACRYPT’18

• allows to reduce the security of multiple sessions to the security of a single one;

• naturally translates to the BC logic, and allows for the first time to perform proofs
for an unbounded number of sessions with this logic.

3H. Comon, C. Jacomme and G. Scerri. CCS’20

22

A classical proof technique

A is trying to break protocol P, while also having access to Q.

A

P Q

23

A classical proof technique

A is trying to break protocol P, while also simulating Q.

A

P B

23

A classical proof technique

A is trying to break protocol P, while also simulating Q.

A

P B

23

A classical proof technique

A is trying to break protocol P, while also simulating Q.

A′

P

23

A classical proof technique

A is trying to break protocol P, while also simulating Q.

P

A′
23

Simulation

The main idea
If A can simulate it, i.e., produce exactly all the same messages:

we remove Q from the picture!

The difficulty
If P and Q share some secret key , A cannot simulate messages which require key .

24

Simulation

The main idea
If A can simulate it, i.e., produce exactly all the same messages:

we remove Q from the picture!

The difficulty
If P and Q share some secret key , A cannot simulate messages which require key .

24

The main idea - example on downgrade attacks

P = version 1 of the previous protocol

A
sign(〈r ,“v1”〉,key)−−−−−−−−−−−→ B

| Checks the signature
<r ,“ok”>←−−−−−−

Q = version 2 of the previous protocol

A
sign(〈r ,“v2”〉,key)−−−−−−−−−−−→ B

| Checks the signature
<r ,“ok”>←−−−−−−

25

The main idea

Example for signatures

• Qkey may produce sign(< m, “v1” >, key)

• Pkey may produce sign(< m′, “v2” >, key)

To prove P while abstracting Q, the attacker must be able to produce
sign(< m′, “v1” >, key).

↪→ We may give an oracle to the attacker, allowing to obtain sign(< m′, “v1” >, key)

but not sign(< m, “v2” >, key)

26

The main idea

Example for signatures

• Qkey may produce sign(< m, “v1” >, key)

• Pkey may produce sign(< m′, “v2” >, key)

To prove P while abstracting Q, the attacker must be able to produce
sign(< m′, “v1” >, key).

↪→ We may give an oracle to the attacker, allowing to obtain sign(< m′, “v1” >, key)

but not sign(< m, “v2” >, key)

26

The main idea

Example for signatures

• Qkey may produce sign(< m, “v1” >, key)

• Pkey may produce sign(< m′, “v2” >, key)

To prove P while abstracting Q, the attacker must be able to produce
sign(< m′, “v1” >, key).

↪→ We may give an oracle to the attacker, allowing to obtain sign(< m′, “v1” >, key)

but not sign(< m, “v2” >, key)

26

The main idea

A is trying to break protocol P, while simulating Q thanks to oracle O.

A

Pkey BO

27

The main idea

A is trying to break protocol P, while simulating Q thanks to oracle O.

A

Pkey BO

27

The main idea

A is trying to break protocol P, while simulating Q thanks to oracle O.

A′O

Pkey

27

The main idea

A is trying to break protocol P, while simulating Q thanks to oracle O.

Pkey

A′O
27

Simulatability

Simulatability

νkey .Qkey is O-simulatable
iff

there exists a PPT AO which, for any fixed value of key ,
produces exactly the same distribution as Qkey

A protocol

Q := . . .

out(sign(〈mess, “v1”〉, key)))

Signing oracle

Osign
key : input(m)

output(sign(〈m, “v1”〉, key)))

28

Simulatability

Simulatability

νkey .Qkey is O-simulatable
iff

there exists a PPT AO which, for any fixed value of key ,
produces exactly the same distribution as Qkey

A protocol

Q := . . .

out(sign(〈mess, “v1”〉, key)))

Signing oracle

Osign
key : input(m)

output(sign(〈m, “v1”〉, key)))

28

Simulatability

Simulatability

νkey .Qkey is O-simulatable
iff

there exists a PPT AO which, for any fixed value of key ,
produces exactly the same distribution as Qkey

A protocol

Q := . . .

out(sign(〈mess, “v1”〉, key)))

Signing oracle

Osign
key : input(m)

output(sign(〈m, “v1”〉, key)))

28

Generic signing oracles

T signing oracle
Osign

T ,sk : input(m)

if T (m) then
output(sign(m, sk))

T-EUF-CMA
checksign(t, pk(sk)) .

= m⇒
T (m)∨

sign(x ,sk)∈ St(t)(t
.
= sign(x , sk) ∧ x

.
= m)

29

Generic signing oracles

T signing oracle
Osign

T ,sk : input(m)

if T (m) then
output(sign(m, sk))

T-EUF-CMA
checksign(t, pk(sk)) .

= m⇒
T (m)∨

sign(x ,sk)∈ St(t)(t
.
= sign(x , sk) ∧ x

.
= m)

29

Conclusions about compositions

• Used as a proof of concept on SSH;

• proofs close to the classical ones;

• mechanizable.

↪→ It was easy to extend Squirrel to support the generic axioms!

30

Conclusion

Summary of contributions

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;

• C. Jacomme and S. Kremer. CSF’18 & ACM TOPS

2. the Squirrel Prover, a mechanized prover in the BC logic.
• D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S&P 21.

3. composition results to allow modular proofs of complex protocols in the
computational model;

• H. Comon, C. Jacomme, and G. Scerri. CCS’20

4. symbolic methods for deciding basic proof steps in computational proofs,
formulated as problems on probabilistic programs;

• G. Barthe, X. Fan, J. Gancher, B. Grégoire, C. Jacomme, and E. Shi. CCS’18
• G. Barthe, B. Grégoire, C. Jacomme, S. Kremer, and P-Y. Strub. CSF’19
• G. Barthe, C. Jacomme, and S. Kremer. LICS’20

31

Summary of contributions

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;

• C. Jacomme and S. Kremer. CSF’18 & ACM TOPS

2. the Squirrel Prover, a mechanized prover in the BC logic.
• D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S&P 21.

3. composition results to allow modular proofs of complex protocols in the
computational model;

• H. Comon, C. Jacomme, and G. Scerri. CCS’20

4. symbolic methods for deciding basic proof steps in computational proofs,
formulated as problems on probabilistic programs;

• G. Barthe, X. Fan, J. Gancher, B. Grégoire, C. Jacomme, and E. Shi. CCS’18
• G. Barthe, B. Grégoire, C. Jacomme, S. Kremer, and P-Y. Strub. CSF’19
• G. Barthe, C. Jacomme, and S. Kremer. LICS’20

31

Summary of contributions

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;

• C. Jacomme and S. Kremer. CSF’18 & ACM TOPS

2. the Squirrel Prover, a mechanized prover in the BC logic.
• D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S&P 21.

3. composition results to allow modular proofs of complex protocols in the
computational model;

• H. Comon, C. Jacomme, and G. Scerri. CCS’20

4. symbolic methods for deciding basic proof steps in computational proofs,
formulated as problems on probabilistic programs;

• G. Barthe, X. Fan, J. Gancher, B. Grégoire, C. Jacomme, and E. Shi. CCS’18
• G. Barthe, B. Grégoire, C. Jacomme, S. Kremer, and P-Y. Strub. CSF’19
• G. Barthe, C. Jacomme, and S. Kremer. LICS’20

31

Summary of contributions

1. a methodology to analyze protocols in the symbolic model, but making the
attacker as strong as possible, with a case study on multi-factor authentication;

• C. Jacomme and S. Kremer. CSF’18 & ACM TOPS

2. the Squirrel Prover, a mechanized prover in the BC logic.
• D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, S. Moreau. S&P 21.

3. composition results to allow modular proofs of complex protocols in the
computational model;

• H. Comon, C. Jacomme, and G. Scerri. CCS’20

4. symbolic methods for deciding basic proof steps in computational proofs,
formulated as problems on probabilistic programs;

• G. Barthe, X. Fan, J. Gancher, B. Grégoire, C. Jacomme, and E. Shi. CCS’18
• G. Barthe, B. Grégoire, C. Jacomme, S. Kremer, and P-Y. Strub. CSF’19
• G. Barthe, C. Jacomme, and S. Kremer. LICS’20

31

What’s next

Modularity
Apply/extend the composition framework to more complex protocols and properties.
(e-voting protocols, forward secrecy for key-exchanges)

Automation
Improve the automation,

• at the high-level, in the Squirrel Prover; (e.g. with SMT solvers)

• at the low-level, through SolvEq.

Collaboration
There will not be one tool to rule them all. Use each for what it does best and combine
formally the guarantees.

32

What’s next

Modularity
Apply/extend the composition framework to more complex protocols and properties.
(e-voting protocols, forward secrecy for key-exchanges)

Automation
Improve the automation,

• at the high-level, in the Squirrel Prover; (e.g. with SMT solvers)

• at the low-level, through SolvEq.

Collaboration
There will not be one tool to rule them all. Use each for what it does best and combine
formally the guarantees.

32

What’s next

Modularity
Apply/extend the composition framework to more complex protocols and properties.
(e-voting protocols, forward secrecy for key-exchanges)

Automation
Improve the automation,

• at the high-level, in the Squirrel Prover; (e.g. with SMT solvers)

• at the low-level, through SolvEq.

Collaboration
There will not be one tool to rule them all. Use each for what it does best and combine
formally the guarantees.

32

What’s next - in real life

Privacy

• It matters.

• Most people, corporation and states don’t care about it.

I would like to try to do something about that. . .

33

What’s next - in real life

Privacy

• It matters.

• Most people, corporation and states don’t care about it.

I would like to try to do something about that. . .

33

What’s next - in real life

Privacy

• It matters.

• Most people, corporation and states don’t care about it.

I would like to try to do something about that. . .

33

What’s next - in real life

Privacy

• It matters.

• Most people, corporation and states don’t care about it.

I would like to try to do something about that. . .

33

Some appendixes

Composition on an example

Main intuition

Basic Theorem Example - Parallel Composition
Given two protocols P and Q, with n = N (P) ∩N (Q), if:

• νn.Q is O-simulatable;

• A |= P ∼ P ′ ;
• the axioms A are sound for machines with access to O.

Then A |= P‖Q ∼ P ′‖Q.

34

A small DDH example

Signed DDH
A(a, skA) B(b, skB)

sign(ga,skA)−−−−−−−−−−−→
xB = ga

sign(<ga,gb>,skB)←−−−−−−−−−−−−−−−
xA = gb

sign(<ga,gb>,skA)−−−−−−−−−−−−−−−→
kA = xaA kB = xbB

35

A small DDH example

The security property:
‖i≤N(A(ai , skA); out(kA)‖B(bi , skB); out(kB))

∼
‖i≤N−1(A(ai , skA); out(kA)‖B(bi , skB); out(kB))
‖ A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

36

A small DDH example

The final security property:
Let’s assume the attacker can simulate

‖i≤N−1(A(ai , skA); out(kA)‖B(bi , skB); out(kB))

.

We can simply prove:

A(aN , skA); out(kA)‖B(bN , skB); out(kB)
∼

A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

↪→ How to simulate the N − 1 sessions ?

37

A small DDH example

The final security property:
Let’s assume the attacker can simulate

‖i≤N−1(A(ai , skA); out(kA)‖B(bi , skB); out(kB))

. We can simply prove:

A(aN , skA); out(kA)‖B(bN , skB); out(kB)
∼

A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

↪→ How to simulate the N − 1 sessions ?

37

A small DDH example

The final security property:
Let’s assume the attacker can simulate

‖i≤N−1(A(ai , skA); out(kA)‖B(bi , skB); out(kB))

. We can simply prove:

A(aN , skA); out(kA)‖B(bN , skB); out(kB)
∼

A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

↪→ How to simulate the N − 1 sessions ?
37

Simulating the sessions

What must the attacker be able to produce ?
He must be able to start some A:

∀1 ≤ i ≤ N − 1. sign(gai , skA)

And for any DDH share r he receives, he should be able to produce:

• ∀1 ≤ i ≤ N − 1. sign(< gai , r >, skA)

• ∀1 ≤ i ≤ N − 1. sign(< r , gbi >, skB)

38

Simulating the sessions

What must the attacker be able to produce ?
He must be able to start some A:

∀1 ≤ i ≤ N − 1. sign(gai , skA)

And for any DDH share r he receives, he should be able to produce:

• ∀1 ≤ i ≤ N − 1. sign(< gai , r >, skA)

• ∀1 ≤ i ≤ N − 1. sign(< r , gbi >, skB)

38

Simulating the sessions

What must the attacker be able to produce ?
He must be able to start some A:

∀1 ≤ i ≤ N − 1. sign(gai , skA)

And for any DDH share r he receives, he should be able to produce:

• ∀1 ≤ i ≤ N − 1. sign(< gai , r >, skA)

• ∀1 ≤ i ≤ N − 1. sign(< r , gbi >, skB)

38

Generic signing oracles

T signing oracle
Osign

T ,sk : input(m)

if T (m) then
output(sign(m, sk)))

Give the attacher access to Osign
T ,skA and Osign

T ,skB with:

T (m) = true⇔ ∃1 ≤ i ≤ N − 1, r .

m = gai

m =< gai , r >

m =< r , gbi >

↪→ How to make the proof for such attackers ?

39

Generic signing oracles

T signing oracle
Osign

T ,sk : input(m)

if T (m) then
output(sign(m, sk)))

Give the attacher access to Osign
T ,skA and Osign

T ,skB with:

T (m) = true⇔ ∃1 ≤ i ≤ N − 1, r .

m = gai

m =< gai , r >

m =< r , gbi >

↪→ How to make the proof for such attackers ?

39

Generic signing oracles

T signing oracle
Osign

T ,sk : input(m)

if T (m) then
output(sign(m, sk)))

Give the attacher access to Osign
T ,skA and Osign

T ,skB with:

T (m) = true⇔ ∃1 ≤ i ≤ N − 1, r .

m = gai

m =< gai , r >

m =< r , gbi >

↪→ How to make the proof for such attackers ?

39

Generic axioms

T-EUF-CMA
For any computable function T , for all terms t such that sk only appears in key
position: checksign(t, pk(sk)))⇒

T (getmess(t))∨
sign(x ,sk)∈ St(t)(t

.
= sign(x , sk)))

∼ true

40

The final proof

Assumption
checksign(t, pk(sk)))⇒
∃1 ≤ i ≤ N − 1, r . getmess(t) ∈ {gai , < gai , r >,< r , gbi >}∨

sign(x ,sk)∈ St(t)(t
.
= sign(x , sk)))

∼ true

∧ DDH : gaN , gbN , gaNbN ∼ gaN , gbN , kN,N

41

The final proof

Assumption
checksign(t, pk(sk)))⇒
∃1 ≤ i ≤ N − 1, r . getmess(t) ∈ {gai , < gai , r >,< r , gbi >}∨

sign(x ,sk)∈ St(t)(t
.
= sign(x , sk)))

∼ true

∧ DDH : gaN , gbN , gaNbN ∼ gaN , gbN , kN,N

41

The final proof

Goal
A(aN , skA); out(kA)‖B(bN , skB); out(kB)

∼
A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

42

The final proof

Synchronization
A(aN , skA); if xA = gbN then out(gaNbN)

else if xA /∈ {gbi}1≤i≤N then out(xaNA)

‖ B(bN , skB); if xB = gaN then out(gaNbN)

else if xB /∈ {gai}1≤i≤N then out(xbNB)

∼
A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

43

The final proof

Synchronization
A(aN , skA); if xA = gbN then out(gaNbN)

else if xA /∈ {gbi}1≤i≤N then out(xaNA)

‖ B(bN , skB); if xB = gaN then out(gaNbN)

else if xB /∈ {gai}1≤i≤N then out(xbNB)

∼
A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

43

The final proof

Synchronization
A(aN , skA); if xA = gbN then out(gaNbN)

else if xA /∈ {gbi}1≤i≤N then out(xaNA)

‖ B(bN , skB); if xB = gaN then out(gaNbN)

else if xB /∈ {gai}1≤i≤N then out(xbNB)

∼
A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

43

The final proof

Synchronization
Proof steps Split the conditonals into four cases and,

1. use DDH to show indistinguishability,

2. use T-EUF-CMA, to show that xA /∈ {gbi}1≤i≤N is never true (e.g, ⊥
unreachable),

3. similar to (2);

4. similar to (2);

44

The final proof

Synchronization
Proof steps Split the conditonals into four cases and,

1. use DDH to show indistinguishability,

2. use T-EUF-CMA, to show that xA /∈ {gbi}1≤i≤N is never true (e.g, ⊥
unreachable),

3. similar to (2);

4. similar to (2);

44

The final proof

Synchronization
Proof steps Split the conditonals into four cases and,

1. use DDH to show indistinguishability,

2. use T-EUF-CMA, to show that xA /∈ {gbi}1≤i≤N is never true (e.g, ⊥
unreachable),

3. similar to (2);

4. similar to (2);

44

The final proof

Synchronization
Proof steps Split the conditonals into four cases and,

1. use DDH to show indistinguishability,

2. use T-EUF-CMA, to show that xA /∈ {gbi}1≤i≤N is never true (e.g, ⊥
unreachable),

3. similar to (2);

4. similar to (2);

44

Formal composition theorems

A core theorem

Composition without replication
Let C [_1, . . . ,_n] be a context such that the variable ki is bound in each hole _i and
P1(x), . . . ,Pn(x) be parametrized protocols, such that all channels are disjoint. Given
an oracle O , with n ⊃ N (C) ∩N (P1, . . . ,Pn), if, with k ′1, . . . , k

′
n fresh names,

1. C [out(1, k1), . . . , out(n, kn)] ∼=O C [out(1, k ′1), . . . , out(n, k
′
n)]

2. νn.in(x).P1(x)‖ . . . ‖in(x).Pn(x) is O-simulatable

Then C [P1(k1), . . . ,Pn(kn)] ∼=O C [P1(k
′
1), . . . ,Pn(k

′
n)]

45

A core theorem

Unbounded parallel Composition
Let Or be an oracle and Ax a set of axioms both parametrized by a sequence of names
s. Let p be a sequence of shared secrets, P(x), R(x , y , z) and Q(x , y) be parametrized
protocols. If we have, for a sequence of names lsid and any integers n, if with
s = lsid1, . . . , lsidn n copies of lsid :

1. ∀ 1 ≤ i ≤ n, νp.tR(p,lsid i ,s)
is Or simulatable.

2. Ax is Or sound.

3. Ax |= tP(p) ∼ tQ(p,s)

Then, for any integer n:

P(p)‖ !nR(p, lsid , s)
∼= Q(p, s)‖ !nR(p, lsid , s)

46

A core theorem

Unbounded parallel Composition
Let Or be an oracle and Ax a set of axioms both parametrized by a sequence of names
s. Let p be a sequence of shared secrets, P(x , y) and Q(x , y , z) be parametrized
protocols. If we have, for sequences of names lsidp, lsidq and any integers n, if with
s = lsidp,1, . . . , lsidp,n, . . . , lsidq,n sequences of copies of lsidp, lsidq
1. ∀ 1 ≤ i ≤ n, νp.tP(p,lsidp,i)

is Or simulatable.

2. ∀ 1 ≤ i ≤ n, νp.tQ(p,lsidq,i ,s)
is Or simulatable.

3. Ax is Or sound.

4. Ax |= tP(p,lsidp)
∼ tQ(p,lsidq ,s)

Then, for any integers n:

!nP(p, lsidp) ∼=O!nQ(p, s, lsidq)

47

	Introduction
	Make the symbolic model more precise Second factor authentication
	An introduction to the BC logic
	A mechanized prover for the BC logic
	A compositional framework inside the computational model
	Conclusion
	Some appendixes
	Composition on an example
	Formal composition theorems

