

3D watermarking – from graphical models to 3D printing

Adrian G. Bors

University of York, UK

E-mail: adrian.bors@york.ac.uk

3D Watermarking - Outline

• 3D Watermarking – requirements

Steganography in Graphical objects

• 3D Steganalysis

• Embedding watermarks in 3D print

Watermarking

- Watermarking represents a method to embed and retrieve information into media
 - Sound
 - Images
 - Pdf files
 - Graphical objects
 - 3D printed objects

Watermarking

- Watermarking represents a method to embed and retrieve information into media
 - Sound
 - Images
 - pdf files
 - Graphical objects
 - 3D printed objects

3D cloud point

3D cloud point

- Data from sensors
- Autonomous driving

Voxel representation -Medical images

3D cloud point

- Data from sensors
- Autonomous driving

3D graphical object

- Computer Graphics
- Virtual reality
- Augmented reality

Voxel representation
-Medical images

3D cloud point

Watermarking

usually is specific for a given representation non-transferable

3D graphical object

Voxel representation

3D Watermarking - Embedding

3D Watermarking - Embedding

3D Watermarking - Retrieving

3D Watermarking - Retrieving

Reversible 3D Watermarking

3D Watermarking - Applications

- Copyright protection track the owner/artist code over transfer of the object – protects the owner
 - useful in markets of digital objects and for outsourcing
 3D objects
- Authentication fragile watermark it should be lost when object is changed – protects the object
- Embedding information specific to the object akin to embedding DNA code of the object
 - Allows for identical objects to have embedded different information which would distinguish them for example identical graphical characters having different behavioral characteristics.

Watermarking - Cryptography - Authentication - Steganography

Technique	Purpose	Attacks	Key Size	Robustness
Watermarking	Copyright protection	No alteration	Small	Very robust
Cryptography	To encode data	Entirely changed	A changeable codebook-large	Very robust
Authentication (Fragile Watermarking)	Certify Object Authenticity	No alteration	Small	It must vanish when 3D object content changes
Steganography	Hide information into 3D Object	No alteration	Very large	Very robust

Robustness Invisibility

Bit Capacity Security

Increase Robustness

Invisibility

- Rotation, scaling
- Compression
- Potential attacks

Bit Capacity

Security

Increase Robustness

- Rotation, scaling
- Compression
- Potential attacks

Decrease Bit Capacity

Watermark becomes visible

Decrease Security

Robustness

Increase Invisibility

- Lower strength
- Hiding procedures

Bit Capacity

Security

Robustness Invisibility

Bit Capacity Security

Increase Decrease Invisibility Robustness Lower strength Hiding procedures Decrease Decrease bit capacity Security

Robustness Invisibility

Bit Capacity Security

- Add more changes for more bits

Decrease Robustness

Watermark becomes visible

Increase bit capacity

- Add more changes for more bits

Decrease Security

Robustness Invisibility Bit Capacity Security

Decrease Robustness

Watermark becomes visible

Decrease the bit capacity corresponding to information

Increase Security

Add error correction codes

3D Watermarking

- 3D Watermarking embedding
 - Directly on shape vertices through geometrical and statistical changes
 - Transformed domain
 - Spectral
 - 3D wavelet
- Research started in about 1997 initial approaches required the original object during the retrieval of the information.

3D Watermarking Embedding

Information is embedded on the surface of 3D object:

3D Watermarking Detection

Information is embedded on the surface of 3D object:

3D Watermarking

Papers Discussed

- J. W. Cho, R. Prost and H. Y. Jung, "An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms," *IEEE Trans. Signal Processing*, vol. 55, no. 1, pp. 142-155, Jan. 2007.
- * A. G. Bors, M. Luo, "Optimized 3D Watermarking for Minimal Surface Distortion," *IEEE Trans. Image Processing*, vol. 22, no. 5, pp. 1822-1835, May 2013.
- M. Luo, A. G. Bors, "Surface-preserving watermarking of 3-D shapes," *IEEE Trans. Image Processing*, vol. 20, no. 10, pp. 2813-2826, Oct 2011.

3D Watermarking – change of mean

Embedding the watermark by changing the mean of the local distribution of vertices

$$\hat{\mu}_i = \begin{cases} \frac{1}{2} + \alpha & \text{if } B_i = 1\\ \frac{1}{2} - \alpha & \text{if } B_i = 0 \end{cases}$$

Vertices are redistributed in order to fit the new distribution

3D Watermarking – change of variance

Embedding the watermark by changing the variance of the local distribution of vertices

$$\hat{\sigma}_i^2 = \begin{cases} \frac{1}{3} + \alpha & \text{if } B_i = 1\\ \frac{1}{3} - \alpha & \text{if } B_i = 0 \end{cases}$$

Vertices are redistributed in order to fit the new distribution

3D Watermarking – bit detection

- Decide the embedded information following a test
- For mean-based embedding

$$\begin{cases} \text{if } \hat{\mu}_i > \frac{1}{2} \text{ then } B_i = 1\\ \text{if } \hat{\mu}_i < \frac{1}{2} \text{ then } B_i = 0. \end{cases}$$

For variance-based embedding

$$\begin{cases} \text{if } \hat{\sigma}_i^2 > \frac{1}{3} \text{ then } B_i = 1\\ \text{if } \hat{\sigma}_i^2 < \frac{1}{3} \text{ then } B_i = 0. \end{cases}$$

3D Watermarking

• J. W. Cho, R. Prost and H. Y. Jung, "An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms," *IEEE Trans. Signal Processing*, vol. 55, no. 1, pp. 142-155, Jan. 2007.

• J. W. Cho, R. Prost and H. Y. Jung, "An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms," *IEEE Trans. Signal Processing*, vol. 55, no. 1, pp. 142-155, Jan. 2007.

* J. W. Cho, R. Prost and H. Y. Jung, "An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms," *IEEE Trans. Signal Processing*, vol. 55, no. 1, pp. 142-155, Jan. 2007.

Define vertex sets resulting from the surface of the object located on sphere

* J. W. Cho, R. Prost and H. Y. Jung, "An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms," *IEEE Trans. Signal Processing,* vol. 55, no. 1, pp. 142-155, Jan. 2007.

3D Watermarking – Spherical change

Embedding in spheric coordinates

* A. G. Bors, M. Luo, "Optimized 3D Watermarking for Minimal Surface Distortion," *IEEE Trans. Image Processing*, vol. 22, no. 5, pp. 1822-1835, May 2013.

3D Watermarking – Spherical change

• Embedding in spheric coordinates – while we optimise with respect to surface distortion using Levenberg–Marquardt algorithm

 A. G. Bors, M. Luo, "Optimized 3D Watermarking for Minimal Surface Distortion," *IEEE Trans. Image Processing*, vol. 22, no. 5, pp. 1822-1835, May 2013.

3D Watermarking – Spherical change

• Embedding in spheric coordinates – while we optimise with respect to surface distortion using Levenberg–Marquardt

 A. G. Bors, M. Luo, "Optimized 3D Watermarking for Minimal Surface Distortion," *IEEE Trans. Image Processing*, vol. 22, no. 5, pp. 1822-1835, May 2013.

Watermarking embedding scheme

M. Luo, A. G. Bors, "Surface-preserving watermarking of 3-D shapes," *IEEE Trans. Image Processing*, vol. 20, no. 10, pp. 2813-2826, Oct 2011.

• Define a reference point, by aligning the object and a secret key

• Define geodesic strips – by following the contour of the surface – in order to enable minimal distortion to the surface

Watermarking detection scheme

- Operations in reverse order from the embedding
- Replace embedding with a statistic test

- Capacity of embedding 32, 64, 128 256 bits
- Two versions of embedding:
 - Changing the mean
 - Changing the variance
- Robustness tests undergone:
 - Additive noise
 - Laplacian Smoothing
 - Mesh simplification
 - Bit quantization
 - Resampling

- Capacity of embedding 32, 64, 128 256 bits
- Two versions of embedding:
 - Changing the mean
 - Changing the variance
- Robustness tests undergone:
 - Additive noise
 - Laplacian Smoothing
 - Mesh simplification
 - Bit quantization
 - Resampling

Adding noise

Mesh simplification

Attacks

Smoothing

Bit quantization

Object Bunny

34,835 vertices

Original detail

Spheric representation

Surface optimization

Geodesic distances

Variance - change

Object Dragon

422,335 vertices

Original detail

Spheric representation

Geodesic

distances

Variance - change

Spheric Geodesic Object Original detail representation distances Statue Mean - change 187,638 vertices

Variance - change

Object Elephant Original detail

Spheric representation

Geodesic distances

Variance - change

Object fandisk

Original detail

Spheric representation

Geodesic distances

6,475 vertices

Variance - change

Object Gear

Original detail

Spheric representation

Surface optimization

Variance - change

Object Fish Original detail

Surface optimization

64,982 vertices

Variance - change

- 3D Steganalysis aims to find whether information was embedded in a 3D object.
- We do not know what was embedded, or how was embedded

- * Y. Yang, I. Ivrissimtzis, "Mesh discriminative features for 3D steganalysis," *ACM Transactions on Multimedia Computing, Communications, and Applications,* vol. 10, no. 3, pp. 27:1–27:13, 2014.
- * Z. Li, A. G. Bors, "Steganalysis of meshes based on 3D wavelet multiresolution analysis," *Information Sciences*, vol. 522, pp. 164-179, 2020.

- 3D Steganalysis aims to find whether information was embedded in a 3D object.
- We do not know what was embedded, or how was embedded

- * Y. Yang, I. Ivrissimtzis, "Mesh discriminative features for 3D steganalysis," *ACM Trans. on Multimedia Computing, Communications, and Applications,* vol. 10, no. 3, pp. 27:1–27:13, 2014.
- * Z. Li, A. G. Bors, "Steganalysis of 3D objects using statistics of local feature sets," *Information Sciences*, vol. 415, pp. 85-99, Nov. 2017.

3D Steganalysis - Cover Source Mismatch

- Steganalysis is a classification/detection problem
- Cover Source Mismatch (CSM)
 - The objects used for training the steganalyzer may come from a cover source different from the one that the steganographier has to assess in the real world.
 - This is related to generalization properties in classifiers
- Select the features that are robust to the variation of cover source, while preserving the discriminant ability of the steganalyzer

3D Steganalysis Framework

3D Steganalysis - Features

3D Steganalysis - Features

Features represent differences between 3D objects (vertices v) and their smoothed versions or vertices v'

Absolute differences of each component

- in cartesian coordinates

$$\phi_1(i) = |v_{x,c}(i) - v'_{x,c}(i)|,$$

$$\phi_2(i) = |v_{y,c}(i) - v'_{y,c}(i)|,$$

$$\phi_3(i) = |v_{z,c}(i) - v'_{z,c}(i)|,$$

- Laplacian coordinates

$$\phi_4(i) = |v_{x,l}(i) - v'_{x,l}(i)|,$$

$$\phi_5(i) = |v_{y,l}(i) - v'_{y,l}(i)|,$$

$$\phi_6(i) = |v_{z,l}(i) - v'_{z,l}(i)|,$$

Absolute differences of norms

- cartesian coordinates
- Laplacian coordinated

$$\phi_7(i) = |||\mathbf{v}_c(i)|| - ||\mathbf{v}'_c(i)|||$$

$$\phi_8(i) = |||\mathbf{v}_l(i)|| - ||\mathbf{v}_l'(i)|||$$

3D Steganalysis - Features

Absolute differences in dihedral angles between faces - calculated in the plane perpendicular on the common edge

$$\phi_9(i) = |\theta_{e(i)} - \theta'_{e(i)}|,$$

- The angles between the surface normal of the two objects

$$\phi_{10}(i) = \arccos \frac{\vec{N}_{F(i)} \cdot \vec{N}_{F'(i)}}{\|\vec{N}_{F(i)}\| \cdot \|\vec{N}_{F'(i)}\|}$$

- Consider the statistics of these 10 features and calculate their mean, variance, skewness and kurtosis – 40 features.

The angle between the Vertex normals

- K_1 is the minimum principal curvature
- K_2 is the maximum principal curvature
- Gaussian curvature

$$K_G = K_1 K_2,$$

Difference in the Gaussian curvature

$$\phi_{12}(i) = |K_G(v(i)) - K_G(v'(i))|,$$

- Curvature ratio

$$K_r = \frac{\min(|K_1|, |K_2|)}{\max(|K_1|, |K_2|)},$$

- The difference in curvature ratio

$$\phi_{13}(i) = |K_r(v(i)) - K_r(v'(i))|,$$

Consider the Spherical coordinate system

$$v_x = R\cos(\varphi)\cos(\theta)$$
$$v_y = R\cos(\varphi)\sin(\theta)$$
$$v_z = R\sin(\varphi)$$

The difference between the spherical coordinates

$$\phi_{14}(i) = |\theta(i) - \theta'(i)|,$$

$$\phi_{15}(i) = |\varphi(i) - \varphi'(i)|,$$

$$\phi_{16}(i) = |R(i) - R'(i)|$$

- Define edges in Spherical coordinate systems

$$K_{\theta}(e_{(i,j)}) = |\theta(i) - \theta(j)|,$$

$$K_{\varphi}(e_{(i,j)}) = |\varphi(i) - \varphi(j)|,$$

$$K_{R}(e_{(i,j)}) = |R(i) - R(j)|$$

- Use statistics of edges in the Spherical coordinate system as steganalytic features

$$\phi_{17}(i) = |K_{\theta}(i) - K'_{\theta}(i)|,$$

$$\phi_{18}(i) = |K_{\varphi}(i) - K'_{\varphi}(i)|,$$

$$\phi_{19}(i) = |K_{R}(i) - K'_{R}(i)|$$

- Consider the statistics of these 19 features and calculate their mean, variance, skewness and kurtosis – 76 features.

Watermarking Method

Yang, Pintus, Rushmeier, Ivrissimtzis, IEEE TVCG, 2017

Cho, Prost, Jung, **IEEE TSP, 2007**

Chao, Lin, Yu, Lee IEEE TVCG, 2009

Object

(f)

(k)

Watermarked $\phi_1(i) = |v_{x,c}(i) - v'_{x,c}(i)|$,

$$\phi_2(i) = |v_{y,c}(i) - v'_{y,c}(i)|, \quad \phi_{13}(i) = |K_r(v(i)) - K_r(v'(i))|,$$

$$\phi_3(i) = |v_{z,c}(i) - v'_{z,c}(i)|,$$

Watermarking Method

Yang, Pintus, Rushmeier, Ivrissimtzis, IEEE TVCG, 2017

Cho, Prost, Jung, **IEEE TSP, 2007**

Chao, Lin, Yu, Lee IEEE TVCG, 2009

Watermarked Object

(f)

(k)

 $\phi_{14}(i) = |\theta(i) - \theta'(i)|, \quad \phi_{16}(i) = |R(i) - R'(i)|$

(o)

Watermarking Method

Yang, Pintus, Rushmeier, Ivrissimtzis, IEEE TVCG, 2017

Watermarked Object

$$\phi_{13}(i) = |K_r(v(i)) - K_r(v'(i))|, \quad \phi_{14}(i) = |\theta(i) - \theta'(i)|,$$

$$\phi_1(i) = |v_{x,c}(i) - v'_{x,c}(i)|,$$

$$\phi_2(i) = |v_{y,c}(i) - v'_{y,c}(i)|,$$

$$\phi_3(i) = |v_{z,c}(i) - v'_{z,c}(i)|,$$

$$\phi_{16}(i) = |R(i) - R'(i)|$$

3D Steganalysis – Feature relevance

- 1. Vertex coordinates in Cartesian coordinate system;
- 2. Vertex norm in Cartesian coordinate system;
- 3. Vertex coordinates in Laplacian coordinate system;
- 4. Vertex norm in Laplacian coordinate system;
- 5. Face normal;
- Dihedral angle;
- 7. Vertex normal;
- 8. Curvature;
- 9. Vertex coordinates in spherical coordinates system;
- 10. The edge length in spherical coordinate system.

3D Steganalysis – Feature relevance

Person coefficient used to define the relevance of features

$$ho(x_i,y) = rac{cov(x_i,y)}{\sigma_{x_i}\sigma_y}$$
 are y class – watermarked or not

i-th feature

3D Steganalysis – Feature relevance

- Person coefficient used to define the relevance of features

$$\rho(x_i, y) = \frac{cov(x_i, y)}{\sigma_{x_i} \sigma_y}$$

 x_i i-th feature

y class – watermarked or not

Yang, Pintus, Rushmeier, Ivrissimtzis, IEEE TVCG, 2017

Cho, Prost, Jung, IEEE TSP, 2007
Mean

Cho, Prost, Jung, IEEE TSP, 2007
Variance

3D Steganalysis – Deep Learning

Training on millions of watermarked – non-watermarked 3D shapes

3D watermarking and steganalysis - Applications – Self Driving

Cloud points – data of surrounding shapes taken by sensors

3D watermarking and steganalysis - Applications – Self Driving

Cloud points – data of surrounding shapes taken by sensors

Hackers can change the cloud points – produce accidents 3D watermarking can ensure the security

3D printing – Additive Manufacturing

3D models can be downloaded and printed using 3D printers

- Copyright protection of artwork by artists, creators, designers
- Embed code specific to 3D printer identify where the object was produced

Watermarking 3D printing

Robustness

Invisibility

Bit Capacity

Security

Watermarking 3D printing

Robustness

Bit Capacity

Invisibility

Security

- Embedding 3D watermarks/information hiding into
 3D printing/Additive Manufacturing has additional challenges
 - Parameters and technology of 3D printing
 - Materials used for 3D printing
 - Precision and quality of surface printed

Watermark 3D printed objects

Watermark 3D printed objects

Embedding Stage

Watermark 3D printed objects

Detecting Stage

3D printing – Surface watermarks

Embedding QR Codes on the surface of 3D objects as bumps

These codes are designed to be detected using simple images

3D printing – Surface watermarks

Cheap 3D printer using plastic filaments

- Object surface contains surface noise as well as various patterns created during slicing
- Shape of patterns (bumps) would vary

Aim – use a handheld phone to retrieve the data from the 3D object

- camera viewpoint, lighting conditions,

Watermarking 3D printing

Pattern – Watermark

(b) Non-flat surface.

Surface properties

(a) Flat opaque.

(c) Flat semi-transparent.

(b) Non-flat opaque.

(d) Non-flat semi-transparent.

Watermarking 3D printing

Pattern – Watermark

Surface Geometry

(b) Non-flat surface.

Surface properties

(a) Flat opaque.

(c) Flat semi-transparent.

(b) Non-flat opaque.

(d) Non-flat semi-transparent.

On surface

Inside the object

3D printing – Surface watermarks

Cheap 3D printer using plastic filaments

- Object surface contains surface noise as well as various patterns created during slicing
- Shape of patterns (bumps) would vary

Aim – use a handheld phone to retrieve the data from the 3D object

- camera viewpoint, lighting conditions,

3D printing – Surface watermarks

These problems can be recovered using:

- Pre-processing of the images, registration
- Deep Network Learning CNN-3DW using 3D kernels
- Retrieve the code, similarly to image watermark detection

3D printing

Deep learning architecture extracting the watermark

Watermarked 3D printed object

Bit

pattern

3D printing – Watermark retrieval

Surface watermark retrieval from photograph

(a) Input image.

(b) LBP image.

(d) Auto registration.

(e) Binarized image.

3D watermarking through 3D printing

Ellipsoids for embed information in the object

(a) Pink

(b) Brown

(c) Dark Green

(d) White

Parameters encoding information:

- Ellipsoid' center location
- Ellipsoid size or ration between axes
- Orientation of the main axis

Challenges in the information extraction stage:

- Extracting the information from under the surface
- Use translucent materials and normal light/photography
- Use radiography
- Use computer tomography

3D watermarking through 3D printing

Images and ellipsoid retrieval

Conclusions

3D watermarking – Information hiding – 3D printing

- Embedding watermark into 3D graphical objects Constraints: invisibility – security - capacity - robustness
- 3D Steganalysis find whether information was embedded into 3D objects
- Embed information into 3D printed objects further challenges
 - Dealing with 3D printing artefacts
 - Extracting the information